論文の概要: Prompt-based Pseudo-labeling Strategy for Sample-Efficient Semi-Supervised Extractive Summarization
- arxiv url: http://arxiv.org/abs/2311.09559v3
- Date: Tue, 2 Jul 2024 02:16:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 08:09:56.672701
- Title: Prompt-based Pseudo-labeling Strategy for Sample-Efficient Semi-Supervised Extractive Summarization
- Title(参考訳): 半効率的な半高速抽出要約のためのプロンプトに基づく擬似ラベル方式
- Authors: Gaurav Sahu, Olga Vechtomova, Issam H. Laradji,
- Abstract要約: 半教師付き学習(SSL)は、ラベル付きデータが不足し、ラベルなしデータが豊富であるシナリオで広く使われているテクニックである。
標準SSLメソッドは、まず分類モデルをトレーニングし、次に分類器の信頼性値を使用して擬似ラベルを選択するために教師-学生パラダイムに従う。
より正確な擬似ラベルでラベルなしのサンプルを抽出するLLMを用いたプロンプトベースの擬似ラベル方式を提案する。
- 参考スコア(独自算出の注目度): 12.582774521907227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised learning (SSL) is a widely used technique in scenarios where labeled data is scarce and unlabeled data is abundant. While SSL is popular for image and text classification, it is relatively underexplored for the task of extractive text summarization. Standard SSL methods follow a teacher-student paradigm to first train a classification model and then use the classifier's confidence values to select pseudo-labels for the subsequent training cycle; however, such classifiers are not suitable to measure the accuracy of pseudo-labels as they lack specific tuning for evaluation, which leads to confidence values that fail to capture the semantics and correctness of the generated summary. To address this problem, we propose a prompt-based pseudo-labeling strategy with LLMs that picks unlabeled examples with more accurate pseudo-labels than using just the classifier's probability outputs. Our approach also includes a relabeling mechanism that improves the quality of pseudo-labels. We evaluate our method on three text summarization datasets: TweetSumm, WikiHow, and ArXiv/PubMed. We empirically show that a prompting-based LLM that scores and generates pseudo-labels outperforms existing SSL methods on ROUGE-1, ROUGE-2, and ROUGE-L scores on all the datasets. Furthermore, our method achieves competitive L-Eval scores (evaluation with LLaMa-3) as a fully supervised method in a data-scarce setting and outperforms fully supervised method in a data-abundant setting.
- Abstract(参考訳): 半教師付き学習(SSL)は、ラベル付きデータが不足し、ラベルなしデータが豊富であるシナリオで広く使われているテクニックである。
SSLは画像とテキストの分類に人気があるが、抽出テキスト要約のタスクでは比較的過小評価されている。
標準SSL法は、まず分類モデルを訓練し、次に分類器の信頼値を使用してその後の訓練サイクルで擬似ラベルを選択するが、評価のための特定のチューニングが欠如しているため、擬似ラベルの精度を測定するには適していない。
この問題に対処するために,LLMを用いたプロンプトベースの擬似ラベル方式を提案する。
提案手法には,擬似ラベルの品質向上のためのレザベリング機構も含まれている。
本手法は、TweetSumm、WikiHow、ArXiv/PubMedの3つのテキスト要約データセット上で評価する。
擬似ラベルを生成するプロンプトベースのLLMは,すべてのデータセットにおいて,ROUGE-1,ROUGE-2,ROUGE-Lの既存のSSLメソッドよりも優れていることを示す。
さらに,データスカース設定において,L-Evalの競合スコア(LLaMa-3による評価)を完全教師付き手法として達成し,データアバンダント設定において完全教師付き手法より優れる。
関連論文リスト
- Generalized Semi-Supervised Learning via Self-Supervised Feature Adaptation [87.17768598044427]
従来の半教師付き学習は、ラベル付きデータとラベルなしデータの特徴分布が一貫したものであると仮定する。
本稿では,ラベル付きおよびラベルなしデータの分散によるSSL性能向上のための汎用フレームワークであるセルフ・スーパービジョン・フィーチャー・アダプテーション(SSFA)を提案する。
提案するSSFAは擬似ラベルベースのSSL学習者に適用可能であり,ラベル付き,ラベルなし,さらには目に見えない分布における性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-05-31T03:13:45Z) - A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
半教師付き学習(SSL)はコンピュータビジョンにおける実践的な課題である。
Pseudo-label (PL) メソッド、例えば FixMatch や FreeMatch は SSL で State of The Art (SOTA) のパフォーマンスを取得する。
本稿では,複数の下位PLを理論的に保証された非偏りと低分散のPLに集約する,軽量なチャネルベースアンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:49:37Z) - Seq-UPS: Sequential Uncertainty-aware Pseudo-label Selection for
Semi-Supervised Text Recognition [21.583569162994277]
最も一般的なSSLアプローチの1つは擬似ラベル(PL)である。
PL法はノイズによって著しく劣化し、ノイズの多いラベルに過度に適合する傾向がある。
テキスト認識のための擬似ラベル生成と不確実性に基づくデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-31T02:21:02Z) - Pseudo-Labeling Based Practical Semi-Supervised Meta-Training for
Few-Shot Learning [125.98370880855579]
擬似ラベルベースメタラーニング(PLML)という,シンプルで効果的なメタトレーニングフレームワークを提案する。
まず、一般的な半教師付き学習(SSL)を用いて分類器を訓練し、ラベルなしデータの擬似ラベルを得る。
ラベル付きおよび擬似ラベル付きデータから数ショットのタスクを構築し、特徴の平滑化と雑音抑圧を伴う新しい微調整法を設計する。
論文 参考訳(メタデータ) (2022-07-14T10:53:53Z) - Self-Adaptive Label Augmentation for Semi-supervised Few-shot
Classification [121.63992191386502]
Few-shotの分類は、ラベル付きサンプルがわずかにあれば、新しいタスクをうまく一般化できるモデルを学ぶことを目的としている。
そこで本研究では,手動で定義した指標を用いて,ラベルのない各サンプルに適切なラベルを割り当てる半教師付き小ショット分類手法を提案する。
SALAの目新しいところは、タスク適応計量であり、エンドツーエンドの方法で異なるタスクに対するメトリックを適応的に学習することができる。
論文 参考訳(メタデータ) (2022-06-16T13:14:03Z) - Pseudo-Labeled Auto-Curriculum Learning for Semi-Supervised Keypoint
Localization [88.74813798138466]
オブジェクトのキーポイントのローカライズは、基本的な視覚的問題である。
キーポイントローカライゼーションネットワークの教師付き学習は、しばしば大量のデータを必要とする。
本稿では,一連の動的しきい値を持つ信頼度の高い擬似ラベルサンプルを自動的に選択する。
論文 参考訳(メタデータ) (2022-01-21T09:51:58Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) は一般的な SSL アプローチで、この制約はありませんが、当初の処方では比較的不十分です。
PLは不整合モデルからの誤った高い信頼度予測により性能が低下していると論じる。
そこで本研究では,疑似ラベリング精度を向上させるための不確実性認識型擬似ラベル選択(ups)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-15T23:29:57Z) - LiDAM: Semi-Supervised Learning with Localized Domain Adaptation and
Iterative Matching [19.606592939074737]
LiDAMは、ドメイン適応とセルフペース学習の両方に根ざした、半教師付き学習アプローチである。
CIFAR-100データセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-10-13T19:57:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。