On the Pauli Spectrum of QAC0
- URL: http://arxiv.org/abs/2311.09631v4
- Date: Wed, 17 Jul 2024 20:47:34 GMT
- Title: On the Pauli Spectrum of QAC0
- Authors: Shivam Nadimpalli, Natalie Parham, Francisca Vasconcelos, Henry Yuen,
- Abstract summary: We conjecture that the Pauli spectrum of $mathsfQAC0$ satisfies low-degree concentration.
We obtain new circuit lower bounds and learning results as applications.
- Score: 2.3436632098950456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The circuit class $\mathsf{QAC}^0$ was introduced by Moore (1999) as a model for constant depth quantum circuits where the gate set includes many-qubit Toffoli gates. Proving lower bounds against such circuits is a longstanding challenge in quantum circuit complexity; in particular, showing that polynomial-size $\mathsf{QAC}^0$ cannot compute the parity function has remained an open question for over 20 years. In this work, we identify a notion of the Pauli spectrum of $\mathsf{QAC}^0$ circuits, which can be viewed as the quantum analogue of the Fourier spectrum of classical $\mathsf{AC}^0$ circuits. We conjecture that the Pauli spectrum of $\mathsf{QAC}^0$ circuits satisfies low-degree concentration, in analogy to the famous Linial, Nisan, Mansour theorem on the low-degree Fourier concentration of $\mathsf{AC}^0$ circuits. If true, this conjecture immediately implies that polynomial-size $\mathsf{QAC}^0$ circuits cannot compute parity. We prove this conjecture for the class of depth-$d$, polynomial-size $\mathsf{QAC}^0$ circuits with at most $n^{O(1/d)}$ auxiliary qubits. We obtain new circuit lower bounds and learning results as applications: this class of circuits cannot correctly compute - the $n$-bit parity function on more than $(\frac{1}{2} + 2^{-\Omega(n^{1/d})})$-fraction of inputs, and - the $n$-bit majority function on more than $(1 - \Omega(n^{-1/2}))$-fraction of inputs. Additionally we show that this class of $\mathsf{QAC}^0$ circuits with limited auxiliary qubits can be learned with quasipolynomial sample complexity, giving the first learning result for $\mathsf{QAC}^0$ circuits. More broadly, our results add evidence that "Pauli-analytic" techniques can be a powerful tool in studying quantum circuits.
Related papers
- Low-degree approximation of QAC$^0$ circuits [0.0]
We show that the parity function cannot be computed in QAC$0$.
We also show that any QAC circuit of depth $d$ that approximately computes parity on $n$ bits requires $2widetildeOmega(n1/d)$.
arXiv Detail & Related papers (2024-11-01T19:04:13Z) - On the Computational Power of QAC0 with Barely Superlinear Ancillae [10.737102385599169]
We show that any depth-$d$ $mathrmQAC0$ circuit requires $n1+3-d$ ancillae to compute a function with approximate degree $ta(n)$.
This is the first superlinear lower bound on the super-linear sized $mathrmQAC0$.
arXiv Detail & Related papers (2024-10-09T02:55:57Z) - Unconditionally separating noisy $\mathsf{QNC}^0$ from bounded polynomial threshold circuits of constant depth [8.66267734067296]
We study classes of constant-depth circuits with bounds that compute restricted threshold functions.
For large enough values of $mathsfbPTFC0[k]$, $mathsfbPTFC0[k] contains $mathsfTC0[k].
arXiv Detail & Related papers (2024-08-29T09:40:55Z) - Parity vs. AC0 with simple quantum preprocessing [0.0]
We study a hybrid circuit model where $mathsfAC0$ operates on measurement outcomes of a $mathsfQNC0$ circuit.
We find that while $mathsfQNC0$ is surprisingly powerful for search and sampling tasks, that power is "locked away" in the global correlations of its output.
arXiv Detail & Related papers (2023-11-22T20:27:05Z) - On the average-case complexity of learning output distributions of
quantum circuits [55.37943886895049]
We show that learning the output distributions of brickwork random quantum circuits is average-case hard in the statistical query model.
This learning model is widely used as an abstract computational model for most generic learning algorithms.
arXiv Detail & Related papers (2023-05-09T20:53:27Z) - Quantum and classical low-degree learning via a dimension-free Remez
inequality [52.12931955662553]
We show a new way to relate functions on the hypergrid to their harmonic extensions over the polytorus.
We show the supremum of a function $f$ over products of the cyclic group $exp(2pi i k/K)_k=1K$.
We extend to new spaces a recent line of work citeEI22, CHP, VZ22 that gave similarly efficient methods for learning low-degrees on hypercubes and observables on qubits.
arXiv Detail & Related papers (2023-01-04T04:15:40Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - The Approximate Degree of DNF and CNF Formulas [95.94432031144716]
For every $delta>0,$ we construct CNF and formulas of size with approximate degree $Omega(n1-delta),$ essentially matching the trivial upper bound of $n.
We show that for every $delta>0$, these models require $Omega(n1-delta)$, $Omega(n/4kk2)1-delta$, and $Omega(n/4kk2)1-delta$, respectively.
arXiv Detail & Related papers (2022-09-04T10:01:39Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Bounds on the QAC$^0$ Complexity of Approximating Parity [0.0]
We prove that QAC circuits of sublogarithmic depth can approximate parity regardless of size.
QAC circuits require at least $Omega(n/d)$ multi-qubit gates to achieve a $1/2 + exp(-o(n/d))$ approximation of parity.
arXiv Detail & Related papers (2020-08-17T16:51:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.