Unconditionally separating noisy $\mathsf{QNC}^0$ from bounded polynomial threshold circuits of constant depth
- URL: http://arxiv.org/abs/2408.16378v1
- Date: Thu, 29 Aug 2024 09:40:55 GMT
- Title: Unconditionally separating noisy $\mathsf{QNC}^0$ from bounded polynomial threshold circuits of constant depth
- Authors: Min-Hsiu Hsieh, Leandro Mendes, Michael de Oliveira, Sathyawageeswar Subramanian,
- Abstract summary: We study classes of constant-depth circuits with bounds that compute restricted threshold functions.
For large enough values of $mathsfbPTFC0[k]$, $mathsfbPTFC0[k] contains $mathsfTC0[k].
- Score: 8.66267734067296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study classes of constant-depth circuits with gates that compute restricted polynomial threshold functions, recently introduced by [Kum23] as a family that strictly generalizes $\mathsf{AC}^0$. Denoting these circuit families $\mathsf{bPTFC}^0[k]$ for $\textit{bounded polynomial threshold circuits}$ parameterized by an integer-valued degree-bound $k$, we prove three hardness results separating these classes from constant-depth quantum circuits ($\mathsf{QNC}^0$). $\hspace{2em}$ - We prove that the parity halving problem [WKS+19], which $\mathsf{QNC}^0$ over qubits can solve with certainty, remains average-case hard for polynomial size $\mathsf{bPTFC}^0[k]$ circuits for all $k=\mathcal{O}(n^{1/(5d)})$. $\hspace{2em}$ - We construct a new family of relation problems based on computing $\mathsf{mod}\ p$ for each prime $p>2$, and prove a separation of $\mathsf{QNC}^0$ circuits over higher dimensional quantum systems (`qupits') against $\mathsf{bPTFC}^0[k]$ circuits for the same degree-bound parameter as above. $\hspace{2em}$ - We prove that both foregoing results are noise-robust under the local stochastic noise model, by introducing fault-tolerant implementations of non-Clifford $\mathsf{QNC}^0/|\overline{T^{1/p}}>$ circuits, that use logical magic states as advice. $\mathsf{bPTFC}^0[k]$ circuits can compute certain classes of Polynomial Threshold Functions (PTFs), which in turn serve as a natural model for neural networks and exhibit enhanced expressivity and computational capabilities. Furthermore, for large enough values of $k$, $\mathsf{bPTFC}^0[k]$ contains $\mathsf{TC}^0$ as a subclass. The main challenges we overcome include establishing classical average-case lower bounds, designing non-local games with quantum-classical gaps in winning probabilities and developing noise-resilient non-Clifford quantum circuits necessary to extend beyond qubits to higher dimensions.
Related papers
- Low-degree approximation of QAC$^0$ circuits [0.0]
We show that the parity function cannot be computed in QAC$0$.
We also show that any QAC circuit of depth $d$ that approximately computes parity on $n$ bits requires $2widetildeOmega(n1/d)$.
arXiv Detail & Related papers (2024-11-01T19:04:13Z) - The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - On the Computational Power of QAC0 with Barely Superlinear Ancillae [10.737102385599169]
We show that any depth-$d$ $mathrmQAC0$ circuit requires $n1+3-d$ ancillae to compute a function with approximate degree $ta(n)$.
This is the first superlinear lower bound on the super-linear sized $mathrmQAC0$.
arXiv Detail & Related papers (2024-10-09T02:55:57Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Parity vs. AC0 with simple quantum preprocessing [0.0]
We study a hybrid circuit model where $mathsfAC0$ operates on measurement outcomes of a $mathsfQNC0$ circuit.
We find that while $mathsfQNC0$ is surprisingly powerful for search and sampling tasks, that power is "locked away" in the global correlations of its output.
arXiv Detail & Related papers (2023-11-22T20:27:05Z) - On the Pauli Spectrum of QAC0 [2.3436632098950456]
We conjecture that the Pauli spectrum of $mathsfQAC0$ satisfies low-degree concentration.
We obtain new circuit lower bounds and learning results as applications.
arXiv Detail & Related papers (2023-11-16T07:25:06Z) - The Approximate Degree of DNF and CNF Formulas [95.94432031144716]
For every $delta>0,$ we construct CNF and formulas of size with approximate degree $Omega(n1-delta),$ essentially matching the trivial upper bound of $n.
We show that for every $delta>0$, these models require $Omega(n1-delta)$, $Omega(n/4kk2)1-delta$, and $Omega(n/4kk2)1-delta$, respectively.
arXiv Detail & Related papers (2022-09-04T10:01:39Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z) - Quantum learning algorithms imply circuit lower bounds [7.970954821067043]
We establish the first general connection between the design of quantum algorithms and circuit lower bounds.
Our proof builds on several works in learning theory, pseudorandomness, and computational complexity.
arXiv Detail & Related papers (2020-12-03T14:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.