ICXML: An In-Context Learning Framework for Zero-Shot Extreme Multi-Label Classification
- URL: http://arxiv.org/abs/2311.09649v2
- Date: Mon, 15 Apr 2024 13:16:46 GMT
- Title: ICXML: An In-Context Learning Framework for Zero-Shot Extreme Multi-Label Classification
- Authors: Yaxin Zhu, Hamed Zamani,
- Abstract summary: This paper focuses on the task of Extreme Multi-Label Classification (XMC) whose goal is to predict multiple labels for each instance from an extremely large label space.
We introduce In-Context Extreme Multilabel Learning (ICXML), a two-stage framework that cuts down the search space by generating a set of candidate labels through incontext learning and then reranks them.
- Score: 22.825115483590285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the task of Extreme Multi-Label Classification (XMC) whose goal is to predict multiple labels for each instance from an extremely large label space. While existing research has primarily focused on fully supervised XMC, real-world scenarios often lack supervision signals, highlighting the importance of zero-shot settings. Given the large label space, utilizing in-context learning approaches is not trivial. We address this issue by introducing In-Context Extreme Multilabel Learning (ICXML), a two-stage framework that cuts down the search space by generating a set of candidate labels through incontext learning and then reranks them. Extensive experiments suggest that ICXML advances the state of the art on two diverse public benchmarks.
Related papers
- Leveraging Label Semantics and Meta-Label Refinement for Multi-Label Question Classification [11.19022605804112]
This paper introduces RR2QC, a novel Retrieval Reranking method To multi-label Question Classification.
It uses label semantics and meta-label refinement to enhance personalized learning and resource recommendation.
Experimental results demonstrate that RR2QC outperforms existing classification methods in Precision@k and F1 scores.
arXiv Detail & Related papers (2024-11-04T06:27:14Z) - Open-world Multi-label Text Classification with Extremely Weak Supervision [30.85235057480158]
We study open-world multi-label text classification under extremely weak supervision (XWS)
We first utilize the user description to prompt a large language model (LLM) for dominant keyphrases of a subset of raw documents, and then construct a label space via clustering.
We then apply a zero-shot multi-label classifier to locate the documents with small top predicted scores, so we can revisit their dominant keyphrases for more long-tail labels.
X-MLClass exhibits a remarkable increase in ground-truth label space coverage on various datasets.
arXiv Detail & Related papers (2024-07-08T04:52:49Z) - UniDEC : Unified Dual Encoder and Classifier Training for Extreme Multi-Label Classification [42.36546066941635]
Extreme Multi-label Classification (XMC) involves predicting a subset of relevant labels from an extremely large label space.
This work proposes UniDEC, a novel end-to-end trainable framework which trains the dual encoder and classifier in together.
arXiv Detail & Related papers (2024-05-04T17:27:51Z) - X-Shot: A Unified System to Handle Frequent, Few-shot and Zero-shot
Learning Simultaneously in Classification [51.07629536521054]
We introduce a novel classification challenge: X-shot, reflecting a real-world context where freq-shot, few-shot, and zero-shot labels co-occur without predefined limits.
X-shot centers on open-domain generalization and devising a system versatile enough to manage various label scenarios.
To our knowledge, this is the first work addressing X-shot learning, where X remains variable.
arXiv Detail & Related papers (2024-03-06T17:13:24Z) - Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations [91.67511167969934]
imprecise label learning (ILL) is a framework for the unification of learning with various imprecise label configurations.
We demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised learning, noisy label learning, and, more importantly, a mixture of these settings.
arXiv Detail & Related papers (2023-05-22T04:50:28Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
Multi-label recognition (MLR) with incomplete labels is very challenging.
Recent works strive to explore the image-to-label correspondence in the vision-language model, ie, CLIP, to compensate for insufficient annotations.
We advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior.
arXiv Detail & Related papers (2023-03-23T12:39:20Z) - A Survey on Extreme Multi-label Learning [72.8751573611815]
Multi-label learning has attracted significant attention from both academic and industry field in recent decades.
It is infeasible to directly adapt them to extremely large label space because of the compute and memory overhead.
eXtreme Multi-label Learning (XML) is becoming an important task and many effective approaches are proposed.
arXiv Detail & Related papers (2022-10-08T08:31:34Z) - Open Vocabulary Extreme Classification Using Generative Models [24.17018785195843]
The extreme multi-label classification (XMC) task aims at tagging content with a subset of labels from an extremely large label set.
We propose GROOV, a fine-tuned seq2seq model for OXMC that generates the set of labels as a flat sequence and is trained using a novel loss independent of predicted label order.
We show the efficacy of the approach, experimenting with popular XMC datasets for which GROOV is able to predict meaningful labels outside the given vocabulary while performing on par with state-of-the-art solutions for known labels.
arXiv Detail & Related papers (2022-05-12T00:33:49Z) - Extreme Zero-Shot Learning for Extreme Text Classification [80.95271050744624]
Extreme Zero-Shot XMC (EZ-XMC) and Few-Shot XMC (FS-XMC) are investigated.
We propose to pre-train Transformer-based encoders with self-supervised contrastive losses.
We develop a pre-training method MACLR, which thoroughly leverages the raw text with techniques including Multi-scale Adaptive Clustering, Label Regularization, and self-training with pseudo positive pairs.
arXiv Detail & Related papers (2021-12-16T06:06:42Z) - MATCH: Metadata-Aware Text Classification in A Large Hierarchy [60.59183151617578]
MATCH is an end-to-end framework that leverages both metadata and hierarchy information.
We propose different ways to regularize the parameters and output probability of each child label by its parents.
Experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH.
arXiv Detail & Related papers (2021-02-15T05:23:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.