Hybrid classical-quantum branch-and-bound algorithm for solving integer
linear problems
- URL: http://arxiv.org/abs/2311.09700v1
- Date: Thu, 16 Nov 2023 09:19:01 GMT
- Title: Hybrid classical-quantum branch-and-bound algorithm for solving integer
linear problems
- Authors: Claudio Sanavio, Edoardo Tignone, Elisa Ercolessi
- Abstract summary: Quantum annealers are suited to solve several logistic optimization problems expressed in the QUBO formulation.
The solutions proposed by the quantum annealers are generally not optimal, as thermal noise and other disturbing effects arise when the number of qubits involved in the calculation is too large.
We propose the use of the classical branch-and-bound algorithm, that divides the problem into sub-problems which are described by a lower number of qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum annealers are suited to solve several logistic optimization problems
expressed in the QUBO formulation. However, the solutions proposed by the
quantum annealers are generally not optimal, as thermal noise and other
disturbing effects arise when the number of qubits involved in the calculation
is too large. In order to deal with this issue, we propose the use of the
classical branch-and-bound algorithm, that divides the problem into
sub-problems which are described by a lower number of qubits. We analyze the
performance of this method on two problems, the knapsack problem and the
traveling salesman problem. Our results show the advantages of this method,
that balances the number of steps that the algorithm has to make with the
amount of error in the solution found by the quantum hardware that the user is
willing to risk. All the results are actual runs on the quantum annealer D-Wave
Advantage.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Benchmarking Variational Quantum Algorithms for Combinatorial Optimization in Practice [0.0]
Variational quantum algorithms and, in particular, variants of the varational quantum eigensolver have been proposed to address optimization (CO) problems.
We numerically investigate what this scaling result means in practice for solving CO problems using Max-Cut as a benchmark.
arXiv Detail & Related papers (2024-08-06T09:57:34Z) - An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - Solving non-native combinatorial optimization problems using hybrid
quantum-classical algorithms [0.0]
Combinatorial optimization is a challenging problem applicable in a wide range of fields from logistics to finance.
Quantum computing has been used to attempt to solve these problems using a range of algorithms.
This work presents a framework to overcome these challenges by integrating quantum and classical resources with a hybrid approach.
arXiv Detail & Related papers (2024-03-05T17:46:04Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - An entanglement perspective on the quantum approximate optimization
algorithm [0.0]
We study the entanglement growth and spread resulting from randomized and optimized QAOA circuits.
We also investigate the entanglement spectrum in connection with random matrix theory.
arXiv Detail & Related papers (2022-06-14T17:37:44Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation
Algorithm [7.581898299650999]
We introduce a simple yet efficient algorithm named Quantum Qubit Rotation Algorithm (QQRA)
The approximate solution of the max-cut problem can be obtained with probability close to 1.
We compare it with the well known quantum approximate optimization algorithm and the classical Goemans-Williamson algorithm.
arXiv Detail & Related papers (2021-10-15T11:19:48Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Adiabatic Quantum Optimization Fails to Solve the Knapsack Problem [0.0]
We use the D-Wave 2000Q adiabatic quantum computer to solve the integer-weight knapsack problem.
We find that adiabatic quantum optimization fails to produce solutions corresponding to optimal filling of the knapsack.
arXiv Detail & Related papers (2020-08-17T16:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.