Regularized Conventions: Equilibrium Computation as a Model of Pragmatic
Reasoning
- URL: http://arxiv.org/abs/2311.09712v1
- Date: Thu, 16 Nov 2023 09:42:36 GMT
- Title: Regularized Conventions: Equilibrium Computation as a Model of Pragmatic
Reasoning
- Authors: Athul Paul Jacob, Gabriele Farina, Jacob Andreas
- Abstract summary: We present a model of pragmatic language understanding, where utterances are produced and understood by searching for regularized equilibria of signaling games.
In this model speakers and listeners search for contextually appropriate utterance--meaning mappings that are both close to game-theoretically optimal conventions and close to a shared, ''default'' semantics.
- Score: 72.21876989058858
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a model of pragmatic language understanding, where utterances are
produced and understood by searching for regularized equilibria of signaling
games. In this model (which we call ReCo, for Regularized Conventions),
speakers and listeners search for contextually appropriate utterance--meaning
mappings that are both close to game-theoretically optimal conventions and
close to a shared, ''default'' semantics. By characterizing pragmatic
communication as equilibrium search, we obtain principled sampling algorithms
and formal guarantees about the trade-off between communicative success and
naturalness. Across several datasets capturing real and idealized human
judgments about pragmatic implicatures, ReCo matches or improves upon
predictions made by best response and rational speech act models of language
understanding.
Related papers
- Collapsed Language Models Promote Fairness [88.48232731113306]
We find that debiased language models exhibit collapsed alignment between token representations and word embeddings.
We design a principled fine-tuning method that can effectively improve fairness in a wide range of debiasing methods.
arXiv Detail & Related papers (2024-10-06T13:09:48Z) - Concept-Best-Matching: Evaluating Compositionality in Emergent Communication [44.995111025271086]
We propose a procedure to assess the compositionality of emergent communication by finding the best-match between emerged words and natural language concepts.
To the best of our knowledge, it is the first time that such direct and interpretable mapping between emergent words and human concepts is provided.
arXiv Detail & Related papers (2024-03-17T12:47:02Z) - Improving Language Models Meaning Understanding and Consistency by
Learning Conceptual Roles from Dictionary [65.268245109828]
Non-human-like behaviour of contemporary pre-trained language models (PLMs) is a leading cause undermining their trustworthiness.
A striking phenomenon is the generation of inconsistent predictions, which produces contradictory results.
We propose a practical approach that alleviates the inconsistent behaviour issue by improving PLM awareness.
arXiv Detail & Related papers (2023-10-24T06:15:15Z) - MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Situated Neural Dialogue Generation [62.44907105496227]
MindDial is a novel conversational framework that can generate situated free-form responses with theory-of-mind modeling.
We introduce an explicit mind module that can track the speaker's belief and the speaker's prediction of the listener's belief.
Our framework is applied to both prompting and fine-tuning-based models, and is evaluated across scenarios involving both common ground alignment and negotiation.
arXiv Detail & Related papers (2023-06-27T07:24:32Z) - Curriculum Learning for Goal-Oriented Semantic Communications with a
Common Language [60.85719227557608]
A holistic goal-oriented semantic communication framework is proposed to enable a speaker and a listener to cooperatively execute a set of sequential tasks.
A common language based on a hierarchical belief set is proposed to enable semantic communications between speaker and listener.
An optimization problem is defined to determine the perfect and abstract description of the events.
arXiv Detail & Related papers (2022-04-21T22:36:06Z) - Pragmatic competence of pre-trained language models through the lens of
discourse connectives [4.917317902787791]
As pre-trained language models (LMs) continue to dominate NLP, it is increasingly important that we understand the depth of language capabilities in these models.
We focus on testing models' ability to use pragmatic cues to predict discourse connectives.
We find that although models predict connectives reasonably well in the context of naturally-occurring data, when we control contexts to isolate high-level pragmatic cues, model sensitivity is much lower.
arXiv Detail & Related papers (2021-09-27T11:04:41Z) - Scalable pragmatic communication via self-supervision [14.01704261285015]
We propose an architecture and learning process in which agents acquire pragmatic policies via self-supervision instead of imitating human data.
This work suggests a new principled approach for equipping artificial agents with pragmatic skills via self-supervision.
arXiv Detail & Related papers (2021-08-12T15:28:30Z) - Probabilistic modelling of rational communication with conditionals [0.0]
We take a probabilistic approach to pragmatic reasoning about conditionals.
We show that our model uniformly explains a number of inferences attested in the literature.
arXiv Detail & Related papers (2021-05-12T08:21:25Z) - Learning to refer informatively by amortizing pragmatic reasoning [35.71540493379324]
We explore the idea that speakers might learn to amortize the cost of Rational Speech Acts over time.
We find that our amortized model is able to quickly generate language that is effective and concise across a range of contexts.
arXiv Detail & Related papers (2020-05-31T02:52:22Z) - Emergence of Pragmatics from Referential Game between Theory of Mind
Agents [64.25696237463397]
We propose an algorithm, using which agents can spontaneously learn the ability to "read between lines" without any explicit hand-designed rules.
We integrate the theory of mind (ToM) in a cooperative multi-agent pedagogical situation and propose an adaptive reinforcement learning (RL) algorithm to develop a communication protocol.
arXiv Detail & Related papers (2020-01-21T19:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.