Concept-Best-Matching: Evaluating Compositionality in Emergent Communication
- URL: http://arxiv.org/abs/2403.14705v1
- Date: Sun, 17 Mar 2024 12:47:02 GMT
- Title: Concept-Best-Matching: Evaluating Compositionality in Emergent Communication
- Authors: Boaz Carmeli, Yonatan Belinkov, Ron Meir,
- Abstract summary: We propose a procedure to assess the compositionality of emergent communication by finding the best-match between emerged words and natural language concepts.
To the best of our knowledge, it is the first time that such direct and interpretable mapping between emergent words and human concepts is provided.
- Score: 44.995111025271086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial agents that learn to communicate in order to accomplish a given task acquire communication protocols that are typically opaque to a human. A large body of work has attempted to evaluate the emergent communication via various evaluation measures, with \emph{compositionality} featuring as a prominent desired trait. However, current evaluation procedures do not directly expose the compositionality of the emergent communication. We propose a procedure to assess the compositionality of emergent communication by finding the best-match between emerged words and natural language concepts. The best-match algorithm provides both a global score and a translation-map from emergent words to natural language concepts. To the best of our knowledge, it is the first time that such direct and interpretable mapping between emergent words and human concepts is provided.
Related papers
- Semantics and Spatiality of Emergent Communication [35.09179957610317]
We identify a goal-agnostic prerequisite to meaningful communication, based on the idea that messages should have similar meanings across instances.
We prove, under mild assumptions, that semantically inconsistent communication protocols can be optimal solutions to the discrimination task.
We also show that the reconstruction objective encourages a stricter property, spatial meaningfulness, which also accounts for the distance between messages.
arXiv Detail & Related papers (2024-11-15T13:19:27Z) - Linguistic Structure from a Bottleneck on Sequential Information Processing [5.850665541267672]
We show that natural-language-like systematicity arises in codes that are constrained by predictive information.
We show that human languages are structured to have low predictive information at the levels of phonology, morphology, syntax, and semantics.
arXiv Detail & Related papers (2024-05-20T15:25:18Z) - Regularized Conventions: Equilibrium Computation as a Model of Pragmatic
Reasoning [72.21876989058858]
We present a model of pragmatic language understanding, where utterances are produced and understood by searching for regularized equilibria of signaling games.
In this model speakers and listeners search for contextually appropriate utterance--meaning mappings that are both close to game-theoretically optimal conventions and close to a shared, ''default'' semantics.
arXiv Detail & Related papers (2023-11-16T09:42:36Z) - Learning Multi-Agent Communication with Contrastive Learning [3.816854668079928]
We introduce an alternative perspective where communicative messages are considered as different incomplete views of the environment state.
By examining the relationship between messages sent and received, we propose to learn to communicate using contrastive learning.
In communication-essential environments, our method outperforms previous work in both performance and learning speed.
arXiv Detail & Related papers (2023-07-03T23:51:05Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
Two cognitive semantic communication frameworks are proposed for the single-user and multiple-user communication scenarios.
An effective semantic correction algorithm is proposed by mining the inference rule from the knowledge graph.
For the multi-user cognitive semantic communication system, a message recovery algorithm is proposed to distinguish messages of different users.
arXiv Detail & Related papers (2023-03-15T12:01:43Z) - Curriculum Learning for Goal-Oriented Semantic Communications with a
Common Language [60.85719227557608]
A holistic goal-oriented semantic communication framework is proposed to enable a speaker and a listener to cooperatively execute a set of sequential tasks.
A common language based on a hierarchical belief set is proposed to enable semantic communications between speaker and listener.
An optimization problem is defined to determine the perfect and abstract description of the events.
arXiv Detail & Related papers (2022-04-21T22:36:06Z) - Emergent Graphical Conventions in a Visual Communication Game [80.79297387339614]
Humans communicate with graphical sketches apart from symbolic languages.
We take the very first step to model and simulate such an evolution process via two neural agents playing a visual communication game.
We devise a novel reinforcement learning method such that agents are evolved jointly towards successful communication and abstract graphical conventions.
arXiv Detail & Related papers (2021-11-28T18:59:57Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
We study the task of few-shot $textitlanguage coordination$.
We require the lead agent to coordinate with a $textitpopulation$ of agents with different linguistic abilities.
This requires the ability to model the partner's beliefs, a vital component of human communication.
arXiv Detail & Related papers (2021-07-12T19:26:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.