論文の概要: Automating the Generation of Prompts for LLM-based Action Choice in PDDL Planning
- arxiv url: http://arxiv.org/abs/2311.09830v3
- Date: Mon, 06 Jan 2025 13:43:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:04:44.045747
- Title: Automating the Generation of Prompts for LLM-based Action Choice in PDDL Planning
- Title(参考訳): PDDL計画におけるLCMに基づく行動選択のためのプロンプト生成の自動化
- Authors: Katharina Stein, Daniel Fišer, Jörg Hoffmann, Alexander Koller,
- Abstract要約: 大規模言語モデル(LLM)は、様々なNLPタスクに革命をもたらした。
LLMを利用してPDDL入力からNLプロンプトを自動的に生成する方法を示す。
- 参考スコア(独自算出の注目度): 59.543858889996024
- License:
- Abstract: Large language models (LLMs) have revolutionized a large variety of NLP tasks. An active debate is to what extent they can do reasoning and planning. Prior work has assessed the latter in the specific context of PDDL planning, based on manually converting three PDDL domains into natural language (NL) prompts. Here we automate this conversion step, showing how to leverage an LLM to automatically generate NL prompts from PDDL input. Our automatically generated NL prompts result in similar LLM-planning performance as the previous manually generated ones. Beyond this, the automation enables us to run much larger experiments, providing for the first time a broad evaluation of LLM planning performance in PDDL.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々なNLPタスクに革命をもたらした。
活発な議論は、どのようにして推論と計画ができるかということだ。
3つのPDDLドメインを自然言語(NL)プロンプトに手作業で変換することで、PDDLプランニングの特定の文脈で後者を評価する。
本稿では、この変換ステップを自動化し、LDMを利用してPDDL入力からNLプロンプトを自動的に生成する方法を示す。
我々の自動生成NLは、以前の手動生成NLと同様のLCM計画性能を実現する。
さらに,この自動化により,PDDLにおけるLCM計画性能の広範な評価を初めて行うことができる。
関連論文リスト
- Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - NATURAL PLAN: Benchmarking LLMs on Natural Language Planning [109.73382347588417]
本稿では,3つのタスク – トリップ計画,ミーティング計画,カレンダースケジューリング – を含む,自然言語の現実的な計画ベンチマークであるNATURAL PLANを紹介する。
我々は、Google Flights、Google Maps、Google Calendarなどのツールからの出力を、モデルに対するコンテキストとして提供することによって、タスクに関する完全な情報を備えたLCMの計画能力に焦点をあてる。
論文 参考訳(メタデータ) (2024-06-06T21:27:35Z) - NL2Plan: Robust LLM-Driven Planning from Minimal Text Descriptions [8.004470925893957]
ドメインに依存しない初めてのオフラインLCM駆動計画システムであるNL2Planを提案する。
我々はNL2Planを4つの計画領域で評価し、15のタスクのうち10を解くことを発見した。
エンド・ツー・エンドモードでのNL2Planの使用に加えて、ユーザは中間結果の検査と修正が可能である。
論文 参考訳(メタデータ) (2024-05-07T11:27:13Z) - On the Roles of LLMs in Planning: Embedding LLMs into Planning Graphs [12.326862964753694]
市販の計画フレームワークにおける大規模言語モデル(LLM)の計画能力について考察する。
LLMを2段階の計画グラフに組み込んだ新しいLLMベースの計画フレームワークを提案する。
様々な計画領域において提案手法の有効性を実証的に示す。
論文 参考訳(メタデータ) (2024-02-18T15:53:32Z) - TIC: Translate-Infer-Compile for accurate "text to plan" using LLMs and Logical Representations [0.0]
本研究では,自然言語計画タスク要求の計画作成の問題について検討する。
本手法は,LLMを用いて自然言語タスク記述の解釈可能な中間表現を生成する。
中間表現のみを出力するためにLLMを用いると、LLMの誤差が大幅に減少する。
論文 参考訳(メタデータ) (2024-02-09T18:39:13Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
従来のルールベースプランナとLCMベースのプランナを併用した,新しいハイブリッドプランナを開発した。
当社のアプローチでは,既存のプランナが苦労する複雑なシナリオをナビゲートし,合理的なアウトプットを生成すると同時に,ルールベースのアプローチと連携して作業する。
論文 参考訳(メタデータ) (2023-12-30T02:53:45Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
大規模言語モデル(LLM)は、最近、シーケンシャルな意思決定タスクの自律的エージェントとして機能する可能性を実証している。
本研究では,LLMエージェントが環境フィードバックに応じて自己生成計画を適応的に改善することのできるクローズドループアプローチであるAdaPlannerを提案する。
幻覚を緩和するために,様々なタスク,環境,エージェント機能にまたがる計画生成を容易にするコードスタイルのLCMプロンプト構造を開発した。
論文 参考訳(メタデータ) (2023-05-26T05:52:27Z) - AutoPlan: Automatic Planning of Interactive Decision-Making Tasks With
Large Language Models [11.895111124804503]
AutoPlanは、LCMベースのエージェントをガイドして、対話的な意思決定タスクを実現するアプローチである。
実験の結果,AutoPlanはベースラインと同等の成功率を達成した。
論文 参考訳(メタデータ) (2023-05-24T11:52:23Z) - Learning to Plan with Natural Language [111.76828049344839]
大規模言語モデル(LLM)は、様々な基本自然言語タスクにおいて顕著な性能を示している。
複雑なタスクを完了するためには、ステップごとに特定のソリューションを生成するためにLCMをガイドするタスクの計画が必要です。
本研究では,(1)第1学習課題計画フェーズにおいて,LCMが学習エラーフィードバックから導出するように促した新たなステップバイステップのソリューションと行動指示を用いてタスク計画を反復的に更新する,という2つの段階を含む学習計画手法を提案する。
論文 参考訳(メタデータ) (2023-04-20T17:09:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。