ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code
- URL: http://arxiv.org/abs/2311.09835v5
- Date: Wed, 21 Aug 2024 13:36:30 GMT
- Title: ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code
- Authors: Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang, Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao, Arman Cohan, Mark Gerstein,
- Abstract summary: ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
- Score: 76.84199699772903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite Large Language Models (LLMs) like GPT-4 achieving impressive results in function-level code generation, they struggle with repository-scale code understanding (e.g., coming up with the right arguments for calling routines), requiring a deeper comprehension of complex file interactions. Also, recently, people have developed LLM agents that attempt to interact with repository code (e.g., compiling and evaluating its execution), prompting the need to evaluate their performance. These gaps have motivated our development of ML-Bench, a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks. Addressing the need for LLMs to interpret long code contexts and translate instructions into precise, executable scripts, ML-Bench encompasses annotated 9,641 examples across 18 GitHub repositories, challenging LLMs to accommodate user-specified arguments and documentation intricacies effectively. To evaluate both LLMs and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment. Our findings indicate that while GPT-4o leads with a Pass@5 rate surpassing 50%, there remains significant scope for improvement, highlighted by issues such as hallucinated outputs and difficulties with bash script generation. Notably, in the more demanding ML-Agent-Bench, GPT-4o achieves a 76.47% success rate, reflecting the efficacy of iterative action and feedback in complex task resolution. Our code, dataset, and models are available at https://github.com/gersteinlab/ML-bench.
Related papers
- SimulBench: Evaluating Language Models with Creative Simulation Tasks [20.233111652638637]
We introduce SimulBench, a benchmark designed to evaluate large language models (LLMs) across a diverse collection of creative simulation scenarios.
A major challenge is to develop an evaluation framework for testing different LLMs fairly while preserving the multi-round interactive nature of simulation tasks between users and AI.
arXiv Detail & Related papers (2024-09-11T21:53:20Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
Large language models (LLMs) have led to a great boost in the performance of code-related tasks.
In this paper, we undertake a systematic and comprehensive study on code summarization in the era of LLMs.
arXiv Detail & Related papers (2024-07-09T05:48:42Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
We construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels.
We test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates robustness settings.
We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark.
arXiv Detail & Related papers (2024-03-06T15:33:32Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task
Completion [96.47420221442397]
We introduce the PowerPoint Task Completion benchmark to assess the ability of Large Language Models to finish multi-turn, multi-modal instructions.
We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence.
The results show that GPT-4 outperforms other LLMs with 75.1% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6% session accuracy.
arXiv Detail & Related papers (2023-11-03T08:06:35Z) - AskIt: Unified Programming Interface for Programming with Large Language
Models [0.0]
Large Language Models (LLMs) exhibit a unique phenomenon known as emergent abilities, demonstrating adeptness across numerous tasks.
This paper introduces AskIt, a domain-specific language specifically designed for LLMs.
Across 50 tasks, AskIt generated concise prompts, achieving a 16.14 % reduction in prompt length compared to benchmarks.
arXiv Detail & Related papers (2023-08-29T21:44:27Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.