If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents
- URL: http://arxiv.org/abs/2401.00812v2
- Date: Mon, 8 Jan 2024 16:22:42 GMT
- Title: If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents
- Authors: Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R. Fung, Sha Li, Zixuan
Huang, Xu Cao, Xingyao Wang, Yiquan Wang, Heng Ji, Chengxiang Zhai
- Abstract summary: Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
- Score: 81.60906807941188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prominent large language models (LLMs) of today differ from past language
models not only in size, but also in the fact that they are trained on a
combination of natural language and formal language (code). As a medium between
humans and computers, code translates high-level goals into executable steps,
featuring standard syntax, logical consistency, abstraction, and modularity. In
this survey, we present an overview of the various benefits of integrating code
into LLMs' training data. Specifically, beyond enhancing LLMs in code
generation, we observe that these unique properties of code help (i) unlock the
reasoning ability of LLMs, enabling their applications to a range of more
complex natural language tasks; (ii) steer LLMs to produce structured and
precise intermediate steps, which can then be connected to external execution
ends through function calls; and (iii) take advantage of code compilation and
execution environment, which also provides diverse feedback for model
improvement. In addition, we trace how these profound capabilities of LLMs,
brought by code, have led to their emergence as intelligent agents (IAs) in
situations where the ability to understand instructions, decompose goals, plan
and execute actions, and refine from feedback are crucial to their success on
downstream tasks. Finally, we present several key challenges and future
directions of empowering LLMs with code.
Related papers
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
We propose a pretraining strategy to enhance the integration of natural language and coding capabilities.
The resulting model, Crystal, demonstrates remarkable capabilities in both domains.
arXiv Detail & Related papers (2024-11-06T10:28:46Z) - Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
We present codellm-devkit (hereafter, CLDK'), an open-source library that significantly simplifies the process of performing program analysis.
CLDK offers developers an intuitive and user-friendly interface, making it incredibly easy to provide rich program analysis context to code LLMs.
arXiv Detail & Related papers (2024-10-16T20:05:59Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
Large language models (LLMs) have the capability of zero-shot learning, which does not require training or fine-tuning.
We propose zsLLMCode, a novel approach that generates functional code embeddings using LLMs.
arXiv Detail & Related papers (2024-09-23T01:03:15Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
Large language models (LLMs) have led to a great boost in the performance of code-related tasks.
In this paper, we undertake a systematic and comprehensive study on code summarization in the era of LLMs.
arXiv Detail & Related papers (2024-07-09T05:48:42Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - MTLLM: LLMs are Meaning-Typed Code Constructs [7.749453456370407]
This paper presents a simplified approach to integrating large language models (LLMs) into programming.
Our approach utilizes the semantic richness in existing programs to automatically translate between the traditional programming languages and the natural language.
We present a fully functional and production-grade implementation for our approach and compare it to SOTA LLM software development tools.
arXiv Detail & Related papers (2024-05-14T21:12:01Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - The potential of LLMs for coding with low-resource and domain-specific
programming languages [0.0]
This study focuses on the econometric scripting language named hansl of the open-source software gretl.
Our findings suggest that LLMs can be a useful tool for writing, understanding, improving, and documenting gretl code.
arXiv Detail & Related papers (2023-07-24T17:17:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.