Efficient Device-Independent Quantum Key Distribution
- URL: http://arxiv.org/abs/2311.09871v2
- Date: Wed, 17 Jan 2024 08:47:37 GMT
- Title: Efficient Device-Independent Quantum Key Distribution
- Authors: Shih-Hsuan Chen, Chun-Hao Chang, Chih-Sung Chuu, Che-Ming Li
- Abstract summary: Device-independent quantum key distribution (DIQKD) is a key distribution scheme whose security is based on the laws of quantum physics.
We propose an efficient device-independent quantum key distribution protocol in which one participant prepares states and transmits them to another participant.
- Score: 4.817429789586127
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Device-independent quantum key distribution (DIQKD) is a key distribution
scheme whose security is based on the laws of quantum physics but does not
require any assumptions about the devices used in the protocol. The security of
the existing entanglement-based DIQKD protocol relies on the Bell test. Here,
we propose an efficient device-independent quantum key distribution (EDIQKD)
protocol in which one participant prepares states and transmits them to another
participant through a quantum channel to measure. In this prepare-and-measure
protocol, the transmission process between participants is characterized
according to the process tomography for security, ruling out any mimicry using
the classical initial, transmission, and final state. Comparing the minimal
number of bits of the raw key to guarantee security against collective attacks,
the efficiency of the EDIQKD protocol is two orders of magnitude more than that
of the DIQKD protocol for the reliable key of which quantum bit error rate is
allowed up to 6.5\%. This advantage will enable participants to substantially
conserve the entangled pair's demanded resources and the measurement. According
to the highest detection efficiency in the recent most advanced photonic
experiment, our protocol can be realized with a non-zero key rate and remains
more efficient than usual DIQKD. Our protocol and its security analysis may
offer helpful insight into identifying the typical prepare-and-measure quantum
information tasks with the device-independent scenario.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Experimental coherent-state quantum secret sharing with finite pulses [15.261941167557849]
Quantum secret sharing (QSS) plays a significant role in quantum communication.
We propose a three-user QSS protocol based on phase-encoding technology.
Our protocol achieves secure key rates ranging from 432 to 192 bps.
arXiv Detail & Related papers (2024-10-08T09:01:06Z) - Device-independent quantum key distribution based on routed Bell tests [0.0]
We investigate DIQKD protocols based on a routed setup.
In these protocols, photons from the source are routed by an actively controlled switch to a nearby test device instead of the distant one.
We find that in an ideal case routed DIQKD protocols can significantly improve detection efficiency requirements, by up to $sim 30%$.
arXiv Detail & Related papers (2024-04-01T15:59:09Z) - One-sided DI-QKD secure against coherent attacks over long distances [0.0]
Device-Independent (DI) QKD protocols overcome this issue by making minimal device assumptions.
We show that a one-sided DI QKD scheme with two measurements per party is secure against coherent attacks up to detection efficiencies greater than 50.1% specifically on the untrusted side.
We also show that, by placing the source of states close to the untrusted side, our protocol is secure over distances comparable to standard QKD protocols.
arXiv Detail & Related papers (2024-03-18T15:01:17Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Upper bounds on key rates in device-independent quantum key distribution
based on convex-combination attacks [1.118478900782898]
We present the convex-combination attack as an efficient, easy-to-use technique for upper-bounding DIQKD key rates.
It allows verifying the accuracy of lower bounds on key rates for state-of-the-art protocols.
arXiv Detail & Related papers (2022-06-13T15:27:48Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Discrete-variable quantum key distribution with homodyne detection [14.121646217925441]
We propose a protocol that combines the simplicity of quantum state preparation in DV-QKD together with the cost-effective and high-bandwidth of homodyne detectors used in CV-QKD.
Our simulation suggests that the protocol is suitable for secure and high-speed practical key distribution over distances.
arXiv Detail & Related papers (2021-09-01T17:12:28Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.