Language Reconstruction with Brain Predictive Coding from fMRI Data
- URL: http://arxiv.org/abs/2405.11597v1
- Date: Sun, 19 May 2024 16:06:02 GMT
- Title: Language Reconstruction with Brain Predictive Coding from fMRI Data
- Authors: Congchi Yin, Ziyi Ye, Piji Li,
- Abstract summary: Theory of predictive coding suggests that human brain naturally engages in continuously predicting future word representations.
textscPredFT achieves current state-of-the-art decoding performance with a maximum BLEU-1 score of $27.8%$.
- Score: 28.217967547268216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many recent studies have shown that the perception of speech can be decoded from brain signals and subsequently reconstructed as continuous language. However, there is a lack of neurological basis for how the semantic information embedded within brain signals can be used more effectively to guide language reconstruction. The theory of predictive coding suggests that human brain naturally engages in continuously predicting future word representations that span multiple timescales. This implies that the decoding of brain signals could potentially be associated with a predictable future. To explore the predictive coding theory within the context of language reconstruction, this paper proposes a novel model \textsc{PredFT} for jointly modeling neural decoding and brain prediction. It consists of a main decoding network for language reconstruction and a side network for predictive coding. The side network obtains brain predictive coding representation from related brain regions of interest with a multi-head self-attention module. This representation is fused into the main decoding network with cross-attention to facilitate the language models' generation process. Experiments are conducted on the largest naturalistic language comprehension fMRI dataset Narratives. \textsc{PredFT} achieves current state-of-the-art decoding performance with a maximum BLEU-1 score of $27.8\%$.
Related papers
- A multimodal LLM for the non-invasive decoding of spoken text from brain recordings [0.4187344935012482]
We propose and end-to-end multimodal LLM for decoding spoken text from fMRI signals.
The proposed architecture is founded on (i) an encoder derived from a specific transformer incorporating an augmented embedding layer for the encoder and a better-adjusted attention mechanism than that present in the state of the art.
A benchmark in performed on a corpus consisting of a set of interactions human-human and human-robot interactions where fMRI and conversational signals are recorded synchronously.
arXiv Detail & Related papers (2024-09-29T14:03:39Z) - Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
Large Language Models (LLMs) have been shown to be effective models of the human language system.
In this work, we investigate the key architectural components driving the surprising alignment of untrained models.
arXiv Detail & Related papers (2024-06-21T12:54:03Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Language Generation from Brain Recordings [68.97414452707103]
We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
arXiv Detail & Related papers (2023-11-16T13:37:21Z) - UniCoRN: Unified Cognitive Signal ReconstructioN bridging cognitive
signals and human language [23.623579364849526]
We propose fMRI2text, the first openvocabulary task aiming to bridge fMRI time series and human language.
We present a baseline solution, UniCoRN: the Unified Cognitive Signal ReconstructioN for Brain Decoding.
Our model achieves a 34.77% BLEU score on fMRI2text, and a 37.04% BLEU when generalized to EEGto-text decoding.
arXiv Detail & Related papers (2023-07-06T05:26:49Z) - BrainBERT: Self-supervised representation learning for intracranial
recordings [18.52962864519609]
We create a reusable Transformer, BrainBERT, for intracranial recordings bringing modern representation learning approaches to neuroscience.
Much like in NLP and speech recognition, this Transformer enables classifying complex concepts, with higher accuracy and with much less data.
In the future, far more concepts will be decodable from neural recordings by using representation learning, potentially unlocking the brain like language models unlocked language.
arXiv Detail & Related papers (2023-02-28T07:40:37Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
Self-supervised algorithms trained on the raw waveform constitute a promising candidate.
We show that Wav2Vec 2.0 learns brain-like representations with as little as 600 hours of unlabelled speech.
arXiv Detail & Related papers (2022-06-03T17:01:46Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Long-range and hierarchical language predictions in brains and
algorithms [82.81964713263483]
We show that while deep language algorithms are optimized to predict adjacent words, the human brain would be tuned to make long-range and hierarchical predictions.
This study strengthens predictive coding theory and suggests a critical role of long-range and hierarchical predictions in natural language processing.
arXiv Detail & Related papers (2021-11-28T20:26:07Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
We show a low-dimensional structure where language models and translation models smoothly interpolate between word embeddings, syntactic and semantic tasks, and future word embeddings.
We find that this representation embedding can predict how well each individual feature space maps to human brain responses to natural language stimuli recorded using fMRI.
This suggests that the embedding captures some part of the brain's natural language representation structure.
arXiv Detail & Related papers (2021-06-09T22:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.