From Pretext to Purpose: Batch-Adaptive Self-Supervised Learning
- URL: http://arxiv.org/abs/2311.09974v2
- Date: Tue, 26 Mar 2024 08:04:00 GMT
- Title: From Pretext to Purpose: Batch-Adaptive Self-Supervised Learning
- Authors: Jiansong Zhang, Linlin Shen, Peizhong Liu,
- Abstract summary: This paper proposes an adaptive technique of batch fusion for self-supervised contrastive learning.
It achieves state-of-the-art performance under equitable comparisons.
We suggest that the proposed method may contribute to the advancement of data-driven self-supervised learning research.
- Score: 32.18543787821028
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, self-supervised contrastive learning has emerged as a distinguished paradigm in the artificial intelligence landscape. It facilitates unsupervised feature learning through contrastive delineations at the instance level. However, crafting an effective self-supervised paradigm remains a pivotal challenge within this field. This paper delves into two crucial factors impacting self-supervised contrastive learning-bach size and pretext tasks, and from a data processing standpoint, proposes an adaptive technique of batch fusion. The proposed method, via dimensionality reduction and reconstruction of batch data, enables formerly isolated individual data to partake in intra-batch communication through the Embedding Layer. Moreover, it adaptively amplifies the self-supervised feature encoding capability as the training progresses. We conducted a linear classification test of this method based on the classic contrastive learning framework on ImageNet-1k. The empirical findings illustrate that our approach achieves state-of-the-art performance under equitable comparisons. Benefiting from its "plug-and-play" characteristics, we further explored other contrastive learning methods. On the ImageNet-100, compared to the original performance, the top1 has seen a maximum increase of 1.25%. We suggest that the proposed method may contribute to the advancement of data-driven self-supervised learning research, bringing a fresh perspective to this community.
Related papers
- Enhancing Hyperspectral Image Prediction with Contrastive Learning in Low-Label Regime [0.810304644344495]
Self-supervised contrastive learning is an effective approach for addressing the challenge of limited labelled data.
We evaluate the method's performance for both the single-label and multi-label classification tasks.
arXiv Detail & Related papers (2024-10-10T10:20:16Z) - Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL) tailored specifically for class-incremental learning scenarios.
Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique.
arXiv Detail & Related papers (2024-05-17T19:49:02Z) - CUCL: Codebook for Unsupervised Continual Learning [129.91731617718781]
The focus of this study is on Unsupervised Continual Learning (UCL), as it presents an alternative to Supervised Continual Learning.
We propose a method named Codebook for Unsupervised Continual Learning (CUCL) which promotes the model to learn discriminative features to complete the class boundary.
Our method significantly boosts the performances of supervised and unsupervised methods.
arXiv Detail & Related papers (2023-11-25T03:08:50Z) - Weighted Ensemble Self-Supervised Learning [67.24482854208783]
Ensembling has proven to be a powerful technique for boosting model performance.
We develop a framework that permits data-dependent weighted cross-entropy losses.
Our method outperforms both in multiple evaluation metrics on ImageNet-1K.
arXiv Detail & Related papers (2022-11-18T02:00:17Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Continual Contrastive Self-supervised Learning for Image Classification [10.070132585425938]
Self-supervise learning method shows tremendous potential on visual representation without any labeled data at scale.
To improve the visual representation of self-supervised learning, larger and more varied data is needed.
In this paper, we make the first attempt to implement the continual contrastive self-supervised learning by proposing a rehearsal method.
arXiv Detail & Related papers (2021-07-05T03:53:42Z) - Co$^2$L: Contrastive Continual Learning [69.46643497220586]
Recent breakthroughs in self-supervised learning show that such algorithms learn visual representations that can be transferred better to unseen tasks.
We propose a rehearsal-based continual learning algorithm that focuses on continually learning and maintaining transferable representations.
arXiv Detail & Related papers (2021-06-28T06:14:38Z) - Dense Contrastive Learning for Self-Supervised Visual Pre-Training [102.15325936477362]
We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images.
Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only 1% slower)
arXiv Detail & Related papers (2020-11-18T08:42:32Z) - A Survey on Contrastive Self-supervised Learning [0.0]
Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets.
Contrastive learning has recently become a dominant component in self-supervised learning methods for computer vision, natural language processing (NLP), and other domains.
This paper provides an extensive review of self-supervised methods that follow the contrastive approach.
arXiv Detail & Related papers (2020-10-31T21:05:04Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
We investigate the benefit of adding semantic-class positives to instance-based Info Noise Contrastive Estimation training.
We propose a novel self-supervised co-training scheme to improve the popular infoNCE loss.
We evaluate the quality of the learnt representation on two different downstream tasks: action recognition and video retrieval.
arXiv Detail & Related papers (2020-10-19T17:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.