Enhancing Hyperspectral Image Prediction with Contrastive Learning in Low-Label Regime
- URL: http://arxiv.org/abs/2410.07790v1
- Date: Thu, 10 Oct 2024 10:20:16 GMT
- Title: Enhancing Hyperspectral Image Prediction with Contrastive Learning in Low-Label Regime
- Authors: Salma Haidar, José Oramas,
- Abstract summary: Self-supervised contrastive learning is an effective approach for addressing the challenge of limited labelled data.
We evaluate the method's performance for both the single-label and multi-label classification tasks.
- Score: 0.810304644344495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised contrastive learning is an effective approach for addressing the challenge of limited labelled data. This study builds upon the previously established two-stage patch-level, multi-label classification method for hyperspectral remote sensing imagery. We evaluate the method's performance for both the single-label and multi-label classification tasks, particularly under scenarios of limited training data. The methodology unfolds in two stages. Initially, we focus on training an encoder and a projection network using a contrastive learning approach. This step is crucial for enhancing the ability of the encoder to discern patterns within the unlabelled data. Next, we employ the pre-trained encoder to guide the training of two distinct predictors: one for multi-label and another for single-label classification. Empirical results on four public datasets show that the predictors trained with our method perform better than those trained under fully supervised techniques. Notably, the performance is maintained even when the amount of training data is reduced by $50\%$. This advantage is consistent across both tasks. The method's effectiveness comes from its streamlined architecture. This design allows for retraining the encoder along with the predictor. As a result, the encoder becomes more adaptable to the features identified by the classifier, improving the overall classification performance. Qualitative analysis reveals the contrastive-learning-based encoder's capability to provide representations that allow separation among classes and identify location-based features despite not being explicitly trained for that. This observation indicates the method's potential in uncovering implicit spatial information within the data.
Related papers
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approaches to semi-supervised learning adopt a teacher-student framework.
We leverage pre-trained motion-forecasting models to generate object trajectories on pseudo-labeled data.
Our approach improves pseudo-label quality in two distinct manners.
arXiv Detail & Related papers (2024-09-17T05:35:00Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
This paper presents one-bit supervision, a novel setting of learning with fewer labels, for image classification.
We propose a multi-stage training paradigm and incorporate negative label suppression into an off-the-shelf semi-supervised learning algorithm.
In multiple benchmarks, the learning efficiency of the proposed approach surpasses that using full-bit, semi-supervised supervision.
arXiv Detail & Related papers (2023-11-26T07:39:00Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Improving Time Series Encoding with Noise-Aware Self-Supervised Learning and an Efficient Encoder [15.39384259348351]
We propose an innovative training strategy that promotes consistent representation learning, accounting for the presence of noise-prone signals in natural time series.
We also propose an encoder architecture that incorporates dilated convolution within the Inception block, resulting in a scalable and robust network with a wide receptive field.
arXiv Detail & Related papers (2023-06-11T04:00:11Z) - Deepfake Detection via Joint Unsupervised Reconstruction and Supervised
Classification [25.84902508816679]
We introduce a novel approach for deepfake detection, which considers the reconstruction and classification tasks simultaneously.
This method shares the information learned by one task with the other, which focuses on a different aspect other existing works rarely consider.
Our method achieves state-of-the-art performance on three commonly-used datasets.
arXiv Detail & Related papers (2022-11-24T05:44:26Z) - Self-Training: A Survey [5.772546394254112]
Semi-supervised algorithms aim to learn prediction functions from a small set of labeled observations and a large set of unlabeled observations.
Among the existing techniques, self-training methods have undoubtedly attracted greater attention in recent years.
We present self-training methods for binary and multi-class classification; as well as their variants and two related approaches.
arXiv Detail & Related papers (2022-02-24T11:40:44Z) - Label, Verify, Correct: A Simple Few Shot Object Detection Method [93.84801062680786]
We introduce a simple pseudo-labelling method to source high-quality pseudo-annotations from a training set.
We present two novel methods to improve the precision of the pseudo-labelling process.
Our method achieves state-of-the-art or second-best performance compared to existing approaches.
arXiv Detail & Related papers (2021-12-10T18:59:06Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
Main challenges in long-tailed recognition come from the imbalanced data distribution and sample scarcity in its tail classes.
We propose a new recognition setting, namely semi-supervised long-tailed recognition.
We demonstrate significant accuracy improvements over other competitive methods on two datasets.
arXiv Detail & Related papers (2021-05-01T00:43:38Z) - Self-supervised driven consistency training for annotation efficient
histopathology image analysis [13.005873872821066]
Training a neural network with a large labeled dataset is still a dominant paradigm in computational histopathology.
We propose a self-supervised pretext task that harnesses the underlying multi-resolution contextual cues in histology whole-slide images to learn a powerful supervisory signal for unsupervised representation learning.
We also propose a new teacher-student semi-supervised consistency paradigm that learns to effectively transfer the pretrained representations to downstream tasks based on prediction consistency with the task-specific un-labeled data.
arXiv Detail & Related papers (2021-02-07T19:46:21Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z) - Semi-Supervised Semantic Segmentation with Cross-Consistency Training [8.894935073145252]
We present a novel cross-consistency based semi-supervised approach for semantic segmentation.
Our method achieves state-of-the-art results in several datasets.
arXiv Detail & Related papers (2020-03-19T20:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.