Finding Real-World Orbital Motion Laws from Data
- URL: http://arxiv.org/abs/2311.10012v1
- Date: Thu, 16 Nov 2023 16:53:52 GMT
- Title: Finding Real-World Orbital Motion Laws from Data
- Authors: Jo\~ao Funenga, Marta Guimar\~aes, Henrique Costa, Cl\'audia Soares
- Abstract summary: A novel approach is presented for discovering PDEs that govern the motion of satellites in space.
The method is based on SINDy, a data-driven technique capable of identifying the underlying dynamics of complex physical systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A novel approach is presented for discovering PDEs that govern the motion of
satellites in space. The method is based on SINDy, a data-driven technique
capable of identifying the underlying dynamics of complex physical systems from
time series data. SINDy is utilized to uncover PDEs that describe the laws of
physics in space, which are non-deterministic and influenced by various factors
such as drag or the reference area (related to the attitude of the satellite).
In contrast to prior works, the physically interpretable coordinate system is
maintained, and no dimensionality reduction technique is applied to the data.
By training the model with multiple representative trajectories of LEO -
encompassing various inclinations, eccentricities, and altitudes - and testing
it with unseen orbital motion patterns, a mean error of around 140 km for the
positions and 0.12 km/s for the velocities is achieved. The method offers the
advantage of delivering interpretable, accurate, and complex models of orbital
motion that can be employed for propagation or as inputs to predictive models
for other variables of interest, such as atmospheric drag or the probability of
collision in an encounter with a spacecraft or space objects. In conclusion,
the work demonstrates the promising potential of using SINDy to discover the
equations governing the behaviour of satellites in space. The technique has
been successfully applied to uncover PDEs describing the motion of satellites
in LEO with high accuracy. The method possesses several advantages over
traditional models, including the ability to provide physically interpretable,
accurate, and complex models of orbital motion derived from high-entropy
datasets. These models can be utilised for propagation or as inputs to
predictive models for other variables of interest.
Related papers
- Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation [48.66623377464203]
Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science.
This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks.
arXiv Detail & Related papers (2024-03-22T17:11:47Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - A machine learning and feature engineering approach for the prediction
of the uncontrolled re-entry of space objects [1.0205541448656992]
We present the development of a deep learning model for the re-entry prediction of uncontrolled objects in Low Earth Orbit (LEO)
The model is based on a modified version of the Sequence-to-Sequence architecture and is trained on the average altitude profile as derived from a set of Two-Line Element (TLE) data of over 400 bodies.
The novelty of the work consists in introducing in the deep learning model, alongside the average altitude, three new input features: a drag-like coefficient (B*), the average solar index, and the area-to-mass ratio of the object.
arXiv Detail & Related papers (2023-03-17T13:53:59Z) - SpaceYOLO: A Human-Inspired Model for Real-time, On-board Spacecraft
Feature Detection [0.0]
Real-time, automated spacecraft feature recognition is needed to pinpoint the locations of collision hazards.
New algorithm SpaceYOLO fuses a state-of-the-art object detector YOLOv5 with a separate neural network based on human-inspired decision processes.
Performance in autonomous spacecraft detection of SpaceYOLO is compared to ordinary YOLOv5 in hardware-in-the-loop experiments.
arXiv Detail & Related papers (2023-02-02T02:11:39Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - STGlow: A Flow-based Generative Framework with Dual Graphormer for
Pedestrian Trajectory Prediction [22.553356096143734]
We propose a novel generative flow based framework with dual graphormer for pedestrian trajectory prediction (STGlow)
Our method can more precisely model the underlying data distribution by optimizing the exact log-likelihood of motion behaviors.
Experimental results on several benchmarks demonstrate that our method achieves much better performance compared to previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-21T07:29:24Z) - Averaging Spatio-temporal Signals using Optimal Transport and Soft
Alignments [110.79706180350507]
We show that our proposed loss can be used to define temporal-temporal baryechecenters as Fr'teche means duality.
Experiments on handwritten letters and brain imaging data confirm our theoretical findings.
arXiv Detail & Related papers (2022-03-11T09:46:22Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - Spacecraft Collision Risk Assessment with Probabilistic Programming [0.0]
Over 34,000 objects bigger than 10 cm in length are known to orbit Earth.
Among them, only a small percentage are active satellites, while the rest of the population is made of dead satellites, rocket bodies, and debris that pose a collision threat to operational spacecraft.
We build a novel physics-based probabilistic generative model for synthetically generating conjunction data messages.
arXiv Detail & Related papers (2020-12-18T14:26:08Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
This article introduces a new physics-based method for rigid point set alignment called Fast Gravitational Approach (FGA)
In FGA, the source and target point sets are interpreted as rigid particle swarms with masses interacting in a globally multiply-linked manner while moving in a simulated gravitational force field.
We show that the new method class has characteristics not found in previous alignment methods.
arXiv Detail & Related papers (2020-09-28T15:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.