論文の概要: zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models
- arxiv url: http://arxiv.org/abs/2311.10112v2
- Date: Fri, 15 Mar 2024 15:38:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 23:12:35.467019
- Title: zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models
- Title(参考訳): zrLLM:大規模言語モデルを用いた時間的知識グラフにおけるゼロショット関係学習
- Authors: Zifeng Ding, Heling Cai, Jingpei Wu, Yunpu Ma, Ruotong Liao, Bo Xiong, Volker Tresp,
- Abstract要約: 埋め込み型TKGF法において,大規模言語モデルを用いて関係表現を生成する。
本稿では,TKGFモデルが従来見つからなかった関係で事実を予測する上で,より優れた性能を実現する上で有効であることを示す。
- 参考スコア(独自算出の注目度): 33.10218179341504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling evolving knowledge over temporal knowledge graphs (TKGs) has become a heated topic. Various methods have been proposed to forecast links on TKGs. Most of them are embedding-based, where hidden representations are learned to represent knowledge graph (KG) entities and relations based on the observed graph contexts. Although these methods show strong performance on traditional TKG forecasting (TKGF) benchmarks, they face a strong challenge in modeling the unseen zero-shot relations that have no prior graph context. In this paper, we try to mitigate this problem as follows. We first input the text descriptions of KG relations into large language models (LLMs) for generating relation representations, and then introduce them into embedding-based TKGF methods. LLM-empowered representations can capture the semantic information in the relation descriptions. This makes the relations, whether seen or unseen, with similar semantic meanings stay close in the embedding space, enabling TKGF models to recognize zero-shot relations even without any observed graph context. Experimental results show that our approach helps TKGF models to achieve much better performance in forecasting the facts with previously unseen relations, while still maintaining their ability in link forecasting regarding seen relations.
- Abstract(参考訳): 時間的知識グラフ(TKG)による進化的知識のモデリングは熱い話題となっている。
TKGのリンクを予測するための様々な手法が提案されている。
多くは埋め込み型であり、隠れた表現は、観察されたグラフコンテキストに基づいて知識グラフ(KG)の実体と関係を表現するために学習される。
これらの手法は従来のTKG予測(TKGF)ベンチマークで強い性能を示すが、従来のグラフコンテキストを持たないゼロショット関係をモデル化する上で大きな課題に直面している。
本稿では,この問題を次のように緩和しようと試みる。
まず,KG関係のテキスト記述を大言語モデル(LLM)に入力して関係表現を生成し,それを埋め込みベースのTKGF手法に導入する。
LLMを用いた表現は、関係記述における意味情報をキャプチャすることができる。
これにより、類似の意味を持つ関係が埋め込み空間に近づき、TKGFモデルが観測されたグラフコンテキストがなくてもゼロショット関係を認識できる。
実験結果から,TKGFモデルでは,従来見つからなかった関係性のある事実を予測し,その関係性に関する予測を関連づける能力を維持しつつ,より優れた性能を達成できることが示唆された。
関連論文リスト
- Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [97.91714896039421]
関係性間の意味的相関は本質的にエッジレベルとエンティティ非依存であることを示す。
本研究では,関係関係のトポロジ・アウェア・コレレーションをモデル化するための新しいサブグラフベース手法,TACOを提案する。
RCNのポテンシャルをさらに活用するために, 完全コモンニアインダストリアルサブグラフを提案する。
論文 参考訳(メタデータ) (2023-09-20T08:11:58Z) - Knowledge Graph Completion with Counterfactual Augmentation [23.20561746976504]
我々は,「実体の近傍が観察と異なるものになったら,その関係は存在するのか?」という反事実的疑問を提起する。
知識グラフ上の因果モデルを慎重に設計し,その疑問に答える反事実関係を生成する。
我々は、KGs上のGNNベースのフレームワークと作成した対物関係を組み込んで、エンティティペア表現の学習を増強する。
論文 参考訳(メタデータ) (2023-02-25T14:08:15Z) - Meta-Learning Based Knowledge Extrapolation for Temporal Knowledge Graph [4.103806361930888]
時間的KG(TKG)は、静的トリプルとタイムスタンプを関連付けることで従来の知識グラフを拡張する。
本稿では,メタラーニングに基づく時間知識グラフ外挿法(MTKGE)モデルを提案する。
MTKGEは知識グラフ外挿法において既存の最先端モデルよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T09:52:26Z) - Learning Meta Representations of One-shot Relations for Temporal
Knowledge Graph Link Prediction [33.36701435886095]
近年,静的知識グラフ(KG)のリレーショナル学習が注目されている。
TKGには豊富な時間情報が含まれており、モデリングには時間的推論技術が必要である。
これは、時間的文脈で少数のショットの関係を学ぶ上で大きな課題となる。
論文 参考訳(メタデータ) (2022-05-21T15:17:52Z) - TranS: Transition-based Knowledge Graph Embedding with Synthetic
Relation Representation [14.759663752868487]
本稿では,知識グラフ埋め込みのためのトランジションベースの新しい手法TranSを提案する。
従来のスコアリングパターンの単一関係ベクトルを合成関係表現に置き換えることで、これらの問題を効果的かつ効率的に解決することができる。
大規模知識グラフデータセット ogbl-wikikg2 の実験は、我々のモデルが最先端の結果を達成することを示す。
論文 参考訳(メタデータ) (2022-04-18T16:55:25Z) - Learning Representations of Entities and Relations [0.0]
この論文は,リンク予測タスクに取り組むことを目的とした知識グラフ表現の改善に焦点を当てている。
最初のコントリビューションはHypERであり、リンク予測性能を単純化し改善する畳み込みモデルである。
第2のコントリビューションは比較的単純な線形モデルであるTuckERで、このモデルが導入された時点では、最先端のリンク予測性能が得られた。
第3の貢献は、双曲空間に埋め込まれた最初のマルチリレーショナルグラフ表現モデルである MuRP である。
論文 参考訳(メタデータ) (2022-01-31T09:24:43Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
本稿では,単語埋め込みのランダムウォークモデル(Arora et al., 2016a)を知識グラフ埋め込み(KGE)に拡張する。
二つの実体 h (head) と t (tail) の間の関係 R の強さを評価するスコア関数を導出する。
理論的解析によって動機付けられた学習目標を提案し,知識グラフからKGEを学習する。
論文 参考訳(メタデータ) (2021-01-25T13:31:29Z) - Tensor Composition Net for Visual Relationship Prediction [115.14829858763399]
画像の視覚的関係を予測するための新しいコンポジションネットワーク(TCN)を提案する。
TCNの鍵となる考え方は、視覚的関係テンソルの低階特性を利用することである。
本稿では,ttcnの画像レベルの視覚関係予測により,画像検索の簡便かつ効率的なメカニズムを示す。
論文 参考訳(メタデータ) (2020-12-10T06:27:20Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - One-shot Learning for Temporal Knowledge Graphs [49.41854171118697]
時間的知識グラフにおけるリンク予測のためのワンショット学習フレームワークを提案する。
提案手法は,実体間の時間的相互作用を効果的に符号化する自己認識機構を用いる。
実験の結果,提案アルゴリズムは2つのよく研究されたベンチマークにおいて,アートベースラインの状態よりも優れていた。
論文 参考訳(メタデータ) (2020-10-23T03:24:44Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。