論文の概要: TransONet: Automatic Segmentation of Vasculature in Computed Tomographic
Angiograms Using Deep Learning
- arxiv url: http://arxiv.org/abs/2311.10328v1
- Date: Fri, 17 Nov 2023 04:59:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 14:48:12.059092
- Title: TransONet: Automatic Segmentation of Vasculature in Computed Tomographic
Angiograms Using Deep Learning
- Title(参考訳): transonet: deep learning を用いたct血管造影図における血管切片の自動解析
- Authors: Alireza Bagheri Rajeoni, Breanna Pederson, Ali Firooz, Hamed
Abdollahi, Andrew K. Smith, Daniel G. Clair, Susan M. Lessner, Homayoun
Valafar
- Abstract要約: 末梢動脈疾患(PAD)手術中の患者の画像に血管系を区分する深層学習モデルを提案する。
本研究は,(1)下行胸部大動脈から腸骨分岐部,(2)下行胸部大動脈からCTA画像の膝までを深層学習技術を用いて正確に分類することに焦点を当てた。
- 参考スコア(独自算出の注目度): 0.08376229126363229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pathological alterations in the human vascular system underlie many chronic
diseases, such as atherosclerosis and aneurysms. However, manually analyzing
diagnostic images of the vascular system, such as computed tomographic
angiograms (CTAs) is a time-consuming and tedious process. To address this
issue, we propose a deep learning model to segment the vascular system in CTA
images of patients undergoing surgery for peripheral arterial disease (PAD).
Our study focused on accurately segmenting the vascular system (1) from the
descending thoracic aorta to the iliac bifurcation and (2) from the descending
thoracic aorta to the knees in CTA images using deep learning techniques. Our
approach achieved average Dice accuracies of 93.5% and 80.64% in test dataset
for (1) and (2), respectively, highlighting its high accuracy and potential
clinical utility. These findings demonstrate the use of deep learning
techniques as a valuable tool for medical professionals to analyze the health
of the vascular system efficiently and accurately. Please visit the GitHub page
for this paper at https://github.com/pip-alireza/TransOnet.
- Abstract(参考訳): ヒト血管系の病理学的変化は動脈硬化や動脈瘤などの多くの慢性疾患を治療する。
しかし,CT(Computed tomographic angiograms)などの血管系の診断画像を手動で解析することは,時間と手間のかかるプロセスである。
そこで本研究では,末梢動脈疾患(PAD)手術中の患者のCTA画像に血管系を分類する深層学習モデルを提案する。
本研究は,(1)下行胸部大動脈から腸骨分岐部,(2)下行胸部大動脈からCTA画像の膝までを深層学習技術を用いて正確に分類することに焦点を当てた。
本研究は,(1) と (2) のテストデータセットにおける平均 dice accuracies 93.5% と 80.64% をそれぞれ達成し,その精度と臨床的有用性を強調した。
これらの知見は, 医療従事者が血管系の健康を効率的に正確に解析するための貴重なツールとして, 深層学習技術を用いることを実証するものである。
本論文のgithubページはhttps://github.com/pip-alireza/transonet.com/でどうぞ。
関連論文リスト
- Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
本提案手法は, 船舶の自動分類による臨界情報を強調することにより, デジタルサブトラクション血管造影(DSA)画像シリーズを向上することを目的としている。
本法は, 臨床用DSA画像シリーズを用いて検討し, 動脈と静脈の効率的な鑑別を実証した。
論文 参考訳(メタデータ) (2024-02-15T00:29:53Z) - Automated Measurement of Vascular Calcification in Femoral
Endarterectomy Patients Using Deep Learning [0.09999629695552192]
大きな動脈に影響を及ぼす慢性炎症性疾患である動脈硬化症は、世界的な健康リスクをもたらす。
深層学習モデルを用いて血管系をCT画像(CTA)に分類した。
大動脈から膝蓋骨への分節動脈におけるDiceの精度は平均83.4%,最先端は0.8%向上した。
論文 参考訳(メタデータ) (2023-11-27T16:47:09Z) - Advancing Ischemic Stroke Diagnosis: A Novel Two-Stage Approach for
Blood Clot Origin Identification [0.0]
本稿では,血液凝固起源を分類する革新的な2段階法について述べる。
MobileNetV3に基づく背景分類器は、大きめのデジタル病理画像を多数のタイルに分割し、細胞物質の存在を検出する。
異なる事前訓練された画像分類アルゴリズムは、血栓の起源を決定するために微調整される。
論文 参考訳(メタデータ) (2023-04-26T18:46:26Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
本稿では,各脊椎の剛性と容積を保存し,登録精度を最大化しながら,弱教師付き深層学習フレームワークを提案する。
また,CTにおける椎体自動分節化はMRIと対比してより正確な結果をもたらすため,CTラベルマップのみに依存するよう,これらの損失を特に設計する。
以上の結果から, 解剖学的認識による損失の増大は, 精度を維持しつつも, 推測変換の妥当性を高めることが示唆された。
論文 参考訳(メタデータ) (2022-05-16T10:59:55Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases
Treatment: Status Quo [55.04215695343928]
大動脈血管木は大動脈とその枝枝動脈からなる。
大動脈弁木の自動・半自動セグメンテーションのための計算手法を体系的に検討した。
論文 参考訳(メタデータ) (2021-08-06T08:18:28Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
X線冠動脈造影画像からの狭窄検出を部分的に自動化する2段階のディープラーニングフレームワークを提案する。
左/右冠動脈角ビューの分類作業において0.97の精度を達成し、LCAとRCAの関心領域の決定について0.68/0.73のリコールを行った。
論文 参考訳(メタデータ) (2021-03-04T11:45:54Z) - Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease [4.233200689119682]
冠状動脈閉塞(狭窄)の評価は、現在、医師による冠動脈造影ビデオシーケンスの視覚的評価によって行われている。
深層学習に基づく自動解析パイプラインを報告し,冠動脈血管造影を迅速かつ客観的に評価する。
我々は、ResNetやU-Netといった強力なディープラーニングアプローチと、従来の画像処理と幾何解析を組み合わせた。
論文 参考訳(メタデータ) (2021-01-29T10:23:49Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。