Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2311.10349v1
- Date: Fri, 17 Nov 2023 06:36:43 GMT
- Title: Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation
- Authors: Tao Wang, Yuanbin Chen, Xinlin Zhang, Yuanbo Zhou, Junlin Lan, Bizhe
Bai, Tao Tan, Min Du, Qinquan Gao, Tong Tong
- Abstract summary: We propose the PLGDF framework, which builds upon the mean teacher network for segmenting medical images with less annotation.
We propose a novel pseudo-label utilization scheme, which combines labeled and unlabeled data to augment the dataset effectively.
Our framework yields superior performance compared to six state-of-the-art semi-supervised learning methods.
- Score: 9.93871075239635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised learning algorithms based on Convolutional Neural Networks have
become the benchmark for medical image segmentation tasks, but their
effectiveness heavily relies on a large amount of labeled data. However,
annotating medical image datasets is a laborious and time-consuming process.
Inspired by semi-supervised algorithms that use both labeled and unlabeled data
for training, we propose the PLGDF framework, which builds upon the mean
teacher network for segmenting medical images with less annotation. We propose
a novel pseudo-label utilization scheme, which combines labeled and unlabeled
data to augment the dataset effectively. Additionally, we enforce the
consistency between different scales in the decoder module of the segmentation
network and propose a loss function suitable for evaluating the consistency.
Moreover, we incorporate a sharpening operation on the predicted results,
further enhancing the accuracy of the segmentation.
Extensive experiments on three publicly available datasets demonstrate that
the PLGDF framework can largely improve performance by incorporating the
unlabeled data. Meanwhile, our framework yields superior performance compared
to six state-of-the-art semi-supervised learning methods. The codes of this
study are available at https://github.com/ortonwang/PLGDF.
Related papers
- GuidedNet: Semi-Supervised Multi-Organ Segmentation via Labeled Data Guide Unlabeled Data [4.775846640214768]
Semi-supervised multi-organ medical image segmentation aids physicians in improving disease diagnosis and treatment planning.
A key concept is that voxel features from labeled and unlabeled data close each other in the feature space more likely to belong to the same class.
We introduce a Knowledge Transfer Cross Pseudo-label Supervision (KT-CPS) strategy, which leverages the prior knowledge obtained from the labeled data to guide the training of the unlabeled data.
arXiv Detail & Related papers (2024-08-09T07:46:01Z) - Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation [13.707121013895929]
We present a novel semi-supervised learning method, Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation.
We use distinct decoders for student and teacher networks while maintain the same encoder.
To learn from unlabeled data, we create pseudo-labels generated by the teacher networks and augment the training data with the pseudo-labels.
arXiv Detail & Related papers (2023-08-31T09:13:34Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - MIPR:Automatic Annotation of Medical Images with Pixel Rearrangement [7.39560318487728]
We pro?pose a novel approach to solve the lack of annotated data from another angle, called medical image pixel rearrangement (short in MIPR)
The MIPR combines image-editing and pseudo-label technology to obtain labeled data.
Experiments on the ISIC18 show that the effect of the data annotated by our method for segmentation task is is equal to or even better than that of doctors annotations.
arXiv Detail & Related papers (2022-04-22T05:54:14Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
Full-reference (FR) image quality assessment (IQA) evaluates the visual quality of a distorted image by measuring its perceptual difference with pristine-quality reference.
Unlabeled data can be easily collected from an image degradation or restoration process, making it encouraging to exploit unlabeled training data to boost FR-IQA performance.
In this paper, we suggest to incorporate semi-supervised and positive-unlabeled (PU) learning for exploiting unlabeled data while mitigating the adverse effect of outliers.
arXiv Detail & Related papers (2022-04-19T09:10:06Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
We propose to adapt contrastive learning to work with meta-label annotations.
We use the meta-labels for pre-training the image encoder as well as to regularize a semi-supervised training.
Results on three different medical image segmentation datasets show that our approach highly boosts the performance of a model trained on a few scans.
arXiv Detail & Related papers (2021-07-29T04:30:46Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.