論文の概要: Exploring the Relationship between In-Context Learning and Instruction
Tuning
- arxiv url: http://arxiv.org/abs/2311.10367v1
- Date: Fri, 17 Nov 2023 07:40:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-20 15:19:45.647108
- Title: Exploring the Relationship between In-Context Learning and Instruction
Tuning
- Title(参考訳): インコンテキスト学習と命令チューニングの関係を探る
- Authors: Hanyu Duan, Yixuan Tang, Yi Yang, Ahmed Abbasi, Kar Yan Tam
- Abstract要約: In-Context Learning (ICL) と Instruction Tuning (IT) は、下流アプリケーションにLarge Language Modelsを採用する2つの主要なパラダイムである。
ICLでは、推論時に一連のデモが提供されるが、LLMのパラメータは更新されない。
ITでは、LLMのパラメータをトレーニング時にチューニングするために一連のデモが使用されるが、推論時にデモは使用されない。
- 参考スコア(独自算出の注目度): 18.186126518966017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-Context Learning (ICL) and Instruction Tuning (IT) are two primary
paradigms of adopting Large Language Models (LLMs) to downstream applications.
However, they are significantly different. In ICL, a set of demonstrations are
provided at inference time but the LLM's parameters are not updated. In IT, a
set of demonstrations are used to tune LLM's parameters in training time but no
demonstrations are used at inference time. Although a growing body of
literature has explored ICL and IT, studies on these topics have largely been
conducted in isolation, leading to a disconnect between these two paradigms. In
this work, we explore the relationship between ICL and IT by examining how the
hidden states of LLMs change in these two paradigms. Through carefully designed
experiments conducted with LLaMA-2 (7B and 13B), we find that ICL is implicit
IT. In other words, ICL changes an LLM's hidden states as if the demonstrations
were used to instructionally tune the model. Furthermore, the convergence
between ICL and IT is largely contingent upon several factors related to the
provided demonstrations. Overall, this work offers a unique perspective to
explore the connection between ICL and IT and sheds light on understanding the
behaviors of LLM.
- Abstract(参考訳): In-Context Learning (ICL) と Instruction Tuning (IT) は、下流アプリケーションにLLM(Large Language Models)を採用する2つの主要なパラダイムである。
しかし、それらはかなり異なる。
ICLでは、推論時に一連のデモが提供されるが、LLMのパラメータは更新されない。
ITでは、LLMのパラメータをトレーニング時にチューニングするために一連のデモが使用されるが、推論時にデモは使用されない。
ICLとITを調査する文献が増えているが、これらのトピックの研究はほとんど独立して行われており、これら2つのパラダイムが切り離されている。
本稿では,これらの2つのパラダイムにおいて,LLMの隠れ状態がどのように変化するかを調べることによって,ICLとITの関係を考察する。
LLaMA-2 (7B, 13B) を用いて慎重に設計した実験により, ICLは暗黙のITであることがわかった。
言い換えれば、ICL は LLM の隠された状態を、まるで模型を指導的にチューニングするためにデモが使われたかのように変更する。
さらに、ICLとITの収束は、提供されたデモに関連するいくつかの要因に大きく依存している。
全体として、この研究はICLとITのつながりを探求するためのユニークな視点を提供し、LLMの振る舞いを理解することに光を当てています。
関連論文リスト
- What Do Language Models Learn in Context? The Structured Task Hypothesis [89.65045443150889]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)と呼ばれるデモで提示されたインコンテキストの例から新しいタスクを学習する
一般的な仮説の一つは、タスク選択によるICLの説明である。
もう一つの一般的な仮説は、ICLはメタ学習の一形態である、すなわち、モデルが事前学習時に学習アルゴリズムを学習し、それを実演に適用する、というものである。
論文 参考訳(メタデータ) (2024-06-06T16:15:34Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) は、Large Language Models (LLM) を用いた自然言語処理のための強力なパラダイムとして登場した。
LLMには、感情認識において強いが矛盾する先行性があり、その予測に影響を及ぼすことが示される。
以上の結果から,ICLをより大きなLCMで事前学習領域外の情動中心タスクに使用する場合,注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-25T19:07:32Z) - Rectifying Demonstration Shortcut in In-Context Learning [15.08431909212102]
大規模言語モデル(LLM)は、ICL(In-context Learning)能力を利用したいくつかのデモで、様々なタスクを解くことができる。
LLMは、ICL予測を進めるために、インプット-ラベル関係よりも、事前に訓練されたデモのセマンティック先行に頼っていることが多い。
論文 参考訳(メタデータ) (2024-03-14T15:30:14Z) - Comparable Demonstrations are Important in In-Context Learning: A Novel
Perspective on Demonstration Selection [22.29452683679149]
In-Context Learning(ICL)は、大規模言語モデル(LLM)をダウンストリームタスクに適用するための重要なパラダイムである。
本研究は、ICLのメカニズムを新しい視点から検討し、ICLの実証選択戦略についてより深い知見を提供する。
論文 参考訳(メタデータ) (2023-12-12T18:05:46Z) - Understanding and Improving In-Context Learning on Vision-language
Models [42.7212469140844]
In-context Learning (ICL) on large language model (LLMs) に大きな注目を集めており、この手法は視覚言語モデル (VLMs) に適用できる。
本研究では,視覚情報と言語情報の両方の重要性について検討する。
我々は、Mixed Modality In-Context Example Selection (MMICES)と呼ばれるシンプルだが効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-29T19:08:11Z) - Hint-enhanced In-Context Learning wakes Large Language Models up for knowledge-intensive tasks [54.153914606302486]
大規模言語モデル(LLM)の規模拡大に伴い、インコンテキスト学習(ICL)能力が出現した。
我々は、オープンドメイン質問応答におけるICLのパワーを探るため、Hint-enhanced In-Context Learning(HICL)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-03T14:39:20Z) - Do pretrained Transformers Learn In-Context by Gradient Descent? [21.23795112800977]
本稿では,自然データを用いた言語モデル(LLaMa-7B)における文脈内学習(ICL)の出現について検討する。
ICL と Gradient Descent (GD) は言語モデルの出力分布を異なる方法で変更する。
これらの結果は、ICLとGDの同値性は未解決の仮説であり、さらなる研究が必要であることを示唆している。
論文 参考訳(メタデータ) (2023-10-12T17:32:09Z) - Label Words are Anchors: An Information Flow Perspective for
Understanding In-Context Learning [77.7070536959126]
大規模言語モデル(LLM)の有望な能力としてインコンテキスト学習(ICL)が出現する
本稿では,情報フローレンズを用いたICLの動作機構について検討する。
本稿では,ICL性能向上のためのアンカー再重み付け手法,推論の高速化のための実演圧縮手法,GPT2-XLにおけるICLエラーの診断のための解析フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-23T15:26:20Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z) - What In-Context Learning "Learns" In-Context: Disentangling Task
Recognition and Task Learning [24.395288160951118]
大規模言語モデル(LLM)は、いくつかのデモでタスクを解くためにコンテキスト内学習(ICL)を利用する。
ICLがデモを利用する2つの方法の特徴付けを行う。
TRのみを用いて非自明な性能を達成でき、TRはより大きなモデルやより多くのデモでさらに改善されないことを示す。
論文 参考訳(メタデータ) (2023-05-16T18:05:19Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。