論文の概要: DSD-DA: Distillation-based Source Debiasing for Domain Adaptive Object Detection
- arxiv url: http://arxiv.org/abs/2311.10437v2
- Date: Fri, 17 May 2024 09:36:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 20:23:25.402439
- Title: DSD-DA: Distillation-based Source Debiasing for Domain Adaptive Object Detection
- Title(参考訳): DSD-DA:ドメイン適応型物体検出のための蒸留源デバイアス
- Authors: Yongchao Feng, Shiwei Li, Yingjie Gao, Ziyue Huang, Yanan Zhang, Qingjie Liu, Yunhong Wang,
- Abstract要約: 我々は、ドメイン適応オブジェクト検出(DAOD)のための新しい蒸留系ソースデバイアス(DSD)フレームワークを提案する。
このフレームワークは、事前訓練された教師モデルからドメインに依存しない知識を抽出し、両方のドメインにおける検出器の性能を向上させる。
また,DCE(Domain-Aware Consistency Enhancing)戦略を提案し,これらの情報を新たなローカライゼーション表現に定式化する。
- 参考スコア(独自算出の注目度): 37.01880023537362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though feature-alignment based Domain Adaptive Object Detection (DAOD) methods have achieved remarkable progress, they ignore the source bias issue, i.e., the detector tends to acquire more source-specific knowledge, impeding its generalization capabilities in the target domain. Furthermore, these methods face a more formidable challenge in achieving consistent classification and localization in the target domain compared to the source domain. To overcome these challenges, we propose a novel Distillation-based Source Debiasing (DSD) framework for DAOD, which can distill domain-agnostic knowledge from a pre-trained teacher model, improving the detector's performance on both domains. In addition, we design a Target-Relevant Object Localization Network (TROLN), which can mine target-related localization information from source and target-style mixed data. Accordingly, we present a Domain-aware Consistency Enhancing (DCE) strategy, in which these information are formulated into a new localization representation to further refine classification scores in the testing stage, achieving a harmonization between classification and localization. Extensive experiments have been conducted to manifest the effectiveness of this method, which consistently improves the strong baseline by large margins, outperforming existing alignment-based works.
- Abstract(参考訳): 特徴調整に基づくドメイン適応オブジェクト検出(DAOD)法は顕著な進歩を遂げているが、ソースバイアスの問題を無視している。
さらに、これらの手法は、ソースドメインと比較して、ターゲットドメインにおける一貫した分類とローカライゼーションを達成する上で、より深刻な課題に直面します。
これらの課題を克服するために、DAODのための新しいDSDフレームワークを提案する。これは、事前訓練された教師モデルからドメインに依存しない知識を抽出し、両方のドメインにおける検出器の性能を向上させる。
さらに,ターゲット関連オブジェクト局所化ネットワーク (TROLN) を設計し,ソースとターゲットスタイルの混合データからターゲット関連ローカライゼーション情報をマイニングする。
そこで本研究では、これらの情報を新たなローカライズ表現に定式化し、テスト段階での分類スコアをさらに洗練し、分類とローカライゼーションの調和を実現するドメイン認識一貫性向上(DCE)戦略を提案する。
この手法の有効性を示すために大規模な実験が行われており、これは既存のアライメントに基づく作業よりも優れた、大きなマージンによる強いベースラインを一貫して改善するものである。
関連論文リスト
- Adaptive Semantic Consistency for Cross-domain Few-shot Classification [29.327469328739785]
クロスドメイン・ショット分類(CD-FSC)は、いくつかのサンプルを用いて新規なターゲットクラスを特定することを目的としている。
本稿では,ドメイン間のロバスト性を改善するためのシンプルなプラグアンドプレイ適応セマンティック一貫性(ASC)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-01T15:37:19Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
非教師なしドメイン適応(UDA)は、ソースドメインからラベルのないデータを持つターゲットドメインへの知識の転送に非常に効果的であることが証明されている。
オープンセットドメイン適応(ODA)は、トレーニングフェーズ中にこれらのクラスを識別する潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-30T11:38:46Z) - Continual Source-Free Unsupervised Domain Adaptation [37.060694803551534]
既存のソースフリーのUnsupervised Domain Adaptationアプローチは破滅的な忘れを見せる。
本稿では,SuDAの継続的な学習環境における課題に対応するための連続的なSUDA(C-SUDA)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-14T20:11:05Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
オピニオンターゲット抽出(OTE)またはアスペクト抽出(AE)は意見マイニングの基本的な課題である。
最近の研究は、現実世界のシナリオでよく見られるクロスドメインのOTEに焦点を当てている。
そこで本稿では,ドメイン固有の教師と学生のネットワークから出力されるモデルが未学習のターゲットデータと一致しない対象サンプルを選択するためのSSLアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-28T16:31:17Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - Revisiting Deep Subspace Alignment for Unsupervised Domain Adaptation [42.16718847243166]
Unsupervised domain adapt (UDA) は、ラベル付きソースドメインからラベル付きターゲットドメインへの知識の転送と適応を目的としている。
伝統的に、部分空間に基づく手法はこの問題に対する重要な解のクラスを形成する。
本稿では,UDAにおける部分空間アライメントの利用を再検討し,一貫した一般化をもたらす新しい適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-05T20:16:38Z) - Adversarially Trained Object Detector for Unsupervised Domain Adaptation [4.9631159466100305]
我々は、教師なし領域適応のための新しいアプローチとして、ソース領域における敵の訓練を適用できることを実証する。
そこで本稿では,頑健な特徴と目標領域とのアライメントを改善するために,対角的トレーニングと特徴アライメントを組み合わせた手法を提案する。
論文 参考訳(メタデータ) (2021-09-13T07:21:28Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。