Chatbots as social companions: How people perceive consciousness, human likeness, and social health benefits in machines
- URL: http://arxiv.org/abs/2311.10599v4
- Date: Wed, 3 Apr 2024 19:32:34 GMT
- Title: Chatbots as social companions: How people perceive consciousness, human likeness, and social health benefits in machines
- Authors: Rose E. Guingrich, Michael S. A. Graziano,
- Abstract summary: We studied people who regularly used companion chatbots and people who did not use them.
Contrary to expectations, companion users indicated that these relationships were beneficial to their social health.
We found the opposite: perceiving companion chatbots as more conscious and humanlike correlated with more positive opinions and more pronounced social health benefits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As artificial intelligence (AI) becomes more widespread, one question that arises is how human-AI interaction might impact human-human interaction. Chatbots, for example, are increasingly used as social companions, and while much is speculated, little is known empirically about how their use impacts human relationships. A common hypothesis is that relationships with companion chatbots are detrimental to social health by harming or replacing human interaction, but this hypothesis may be too simplistic, especially considering the social needs of users and the health of their preexisting human relationships. To understand how relationships with companion chatbots impact social health, we studied people who regularly used companion chatbots and people who did not use them. Contrary to expectations, companion chatbot users indicated that these relationships were beneficial to their social health, whereas non-users viewed them as harmful. Another common assumption is that people perceive conscious, humanlike AI as disturbing and threatening. Among both users and non-users, however, we found the opposite: perceiving companion chatbots as more conscious and humanlike correlated with more positive opinions and more pronounced social health benefits. Detailed accounts from users suggested that these humanlike chatbots may aid social health by supplying reliable and safe interactions, without necessarily harming human relationships, but this may depend on users' preexisting social needs and how they perceive both human likeness and mind in the chatbot.
Related papers
- Exploring the Role of AI-Powered Chatbots for Teens and Young Adults with ASD or Social Anxiety [0.0]
People with High-Functioning Autistic Spectrum Disorder often face navigation challenges that individuals of other demographics simply do not themselves.
This paper addresses these queries and offers insights to inform future discussions on the subject.
arXiv Detail & Related papers (2024-12-04T22:10:58Z) - The Illusion of Empathy: How AI Chatbots Shape Conversation Perception [10.061399479158903]
GPT-based chatbots were perceived as less empathetic than human conversational partners.
Empathy ratings from GPT-4o annotations aligned with users' ratings, reinforcing the perception of lower empathy.
Empathy models trained on human-human conversations detected no significant differences in empathy language.
arXiv Detail & Related papers (2024-11-19T21:47:08Z) - Evaluating Chatbots to Promote Users' Trust -- Practices and Open
Problems [11.427175278545517]
This paper reviews current practices for testing chatbots.
It identifies gaps as open problems in pursuit of user trust.
It outlines a path forward to mitigate issues of trust related to service or product performance, user satisfaction and long-term unintended consequences for society.
arXiv Detail & Related papers (2023-09-09T22:40:30Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - Neural Generation Meets Real People: Building a Social, Informative
Open-Domain Dialogue Agent [65.68144111226626]
Chirpy Cardinal aims to be both informative and conversational.
We let both the user and bot take turns driving the conversation.
Chirpy Cardinal placed second out of nine bots in the Alexa Prize Socialbot Grand Challenge.
arXiv Detail & Related papers (2022-07-25T09:57:23Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
This study presents a framework whereby several empathetic chatbots are based on understanding users' implied feelings and replying empathetically for multiple dialogue turns.
We call these chatbots CheerBots. CheerBots can be retrieval-based or generative-based and were finetuned by deep reinforcement learning.
To respond in an empathetic way, we develop a simulating agent, a Conceptual Human Model, as aids for CheerBots in training with considerations on changes in user's emotional states in the future to arouse sympathy.
arXiv Detail & Related papers (2021-10-08T07:44:47Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z) - Artificial intelligence in communication impacts language and social
relationships [11.212791488179757]
We study the social consequences of one of the most pervasive AI applications: algorithmic response suggestions ("smart replies")
We find that using algorithmic responses increases communication efficiency, use of positive emotional language, and positive evaluations by communication partners.
However, consistent with common assumptions about the negative implications of AI, people are evaluated more negatively if they are suspected to be using algorithmic responses.
arXiv Detail & Related papers (2021-02-10T22:05:11Z) - CASS: Towards Building a Social-Support Chatbot for Online Health
Community [67.45813419121603]
The CASS architecture is based on advanced neural network algorithms.
It can handle new inputs from users and generate a variety of responses to them.
With a follow-up field experiment, CASS is proven useful in supporting individual members who seek emotional support.
arXiv Detail & Related papers (2021-01-04T05:52:03Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
Social language used by human agents is associated with greater users' responsiveness and task completion.
The model uses a sequence-to-sequence deep learning architecture, extended with a social language understanding element.
Evaluation in terms of content preservation and social language level using both human judgment and automatic linguistic measures shows that the model can generate responses that enable agents to address users' issues in a more socially appropriate way.
arXiv Detail & Related papers (2020-12-29T08:22:48Z) - "Love is as Complex as Math": Metaphor Generation System for Social
Chatbot [13.128146708018438]
We investigate the usage of a commonly used rhetorical device by human -- metaphor for social chatbots.
Our work first designs a metaphor generation framework, which generates topic-aware and novel figurative sentences.
Human annotators validate the novelty and properness of the generated metaphors.
arXiv Detail & Related papers (2020-01-03T05:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.