Non-Zero Mean Quantum Wishart Distribution Of Random Quantum States And
Application
- URL: http://arxiv.org/abs/2311.10672v2
- Date: Tue, 23 Jan 2024 06:55:52 GMT
- Title: Non-Zero Mean Quantum Wishart Distribution Of Random Quantum States And
Application
- Authors: Shrobona Bagchi
- Abstract summary: We find out the closed form expression for the distribution of random quantum states pertaining to non-central Wishart distribution.
We show an application of this via a fast and efficient algorithm for the random sampling of quantum states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Random quantum states are useful in various areas of quantum information
science. Distributions of random quantum states using Gaussian distributions
have been used in various scenarios in quantum information science. One of this
is the distribution of random quantum states derived using the Wishart
distibution usually used in statistics. This distribution of random quantum
states using the Wishart distribution has recently been named as the quantum
Wishart distribution \cite{Han}. The quantum Wishart distribution has been
found for non-central distribution with a general covariance matrix and zero
mean matrix. Here, we find out the closed form expression for the distribution
of random quantum states pertaining to non-central Wishart distribution with
any general rank one mean matrix and a general covariance matrix for arbitrary
dimensions in both real and complex Hilbert space. We term this as the non-zero
mean quantum Wishart distribution. We find out the method for the desired
placement of its peak position in the real and complex Hilbert space for
arbitrary dimensions. We also show an application of this via a fast and
efficient algorithm for the random sampling of quantum states, mainly for
qubits where the target distribution is a well behaved arbitrary probability
distribution function occurring in the context of quantum state estimation
experimental data .
Related papers
- One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Cutoff phenomenon and entropic uncertainty for random quantum circuits [0.0]
How fast a state of a system converges to a stationary state is one of the fundamental questions in science.
Some Markov chains and random walks on finite groups are known to exhibit the non-asymptotic convergence to a stationary distribution.
We show how quickly a random quantum circuit could transform a quantum state to a Haar-measure random quantum state.
arXiv Detail & Related papers (2023-05-20T03:33:48Z) - Generating Haar-uniform Randomness using Stochastic Quantum Walks on a
Photonic Chip [14.111146438141967]
The Haar measure of randomness is a useful tool with wide applications such as boson sampling.
Recently, a theoretical protocol was proposed to combine quantum control theory and driven quantum walks to generate Haar-uniform random operations.
Here, we implement a two-dimensional quantum walk on the integrated photonic chip and demonstrate that the average of all distribution profiles converges to the even distribution when the evolution length increases, suggesting the 1-padar-uniform randomness.
arXiv Detail & Related papers (2021-12-13T10:35:37Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Exact emergent quantum state designs from quantum chaotic dynamics [0.0]
We consider an ensemble of pure states supported on a small subsystem, generated from projective measurements of the remainder of the system in a local basis.
We rigorously show that the ensemble, derived for a class of quantum chaotic systems undergoing quench dynamics, approaches a universal form completely independent of system details.
Our work establishes bridges between quantum many-body physics, quantum information and random matrix theory, by showing that pseudo-random states can arise from isolated quantum dynamics.
arXiv Detail & Related papers (2021-09-15T18:00:10Z) - Improving application performance with biased distributions of quantum
states [0.0]
We analyze mixtures of Haar-random pure states with Dirichlet-distributed coefficients.
We analytically derive the concentration parameters required to match the mean purity of the Bures and Hilbert--Schmidt distributions.
We demonstrate how substituting these Dirichlet-weighted Haar mixtures in place of the Bures and Hilbert--Schmidt distributions results in measurable performance advantages.
arXiv Detail & Related papers (2021-07-15T23:29:10Z) - Time-inhomogeneous Quantum Walks with Decoherence on Discrete Infinite
Spaces [0.2538209532048866]
Recently, a unified time-inhomogeneous coin-turning random walk with rescaled limiting distributions, Bernoulli, uniform, arcsine and semicircle laws as parameter varies have been obtained.
We obtained a representation theorem for time-inhomogeneous quantum walk on discrete infinite state space.
The convergence of the distributions of the decoherent quantum walks are numerically estimated.
arXiv Detail & Related papers (2021-04-19T07:50:52Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.