論文の概要: Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations
- arxiv url: http://arxiv.org/abs/2311.10779v1
- Date: Thu, 16 Nov 2023 07:09:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 14:37:44.200621
- Title: Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations
- Title(参考訳): 知識プラグイン:ドメイン特化レコメンデーションのための大規模言語モデルの強化
- Authors: Jing Yao, Wei Xu, Jianxun Lian, Xiting Wang, Xiaoyuan Yi and Xing Xie
- Abstract要約: 本稿では,大規模言語モデルをDOmain固有のKnowledgEで拡張し,実践的アプリケーション,すなわちDOKEの性能を向上させるためのパラダイムを提案する。
このパラダイムはドメイン知識抽出器に依存し,1)タスクに効果的な知識を準備すること,2)特定のサンプルごとに知識を選択すること,3)LLMで理解可能な方法で知識を表現すること,の3つのステップで動作する。
- 参考スコア(独自算出の注目度): 50.81844184210381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The significant progress of large language models (LLMs) provides a promising
opportunity to build human-like systems for various practical applications.
However, when applied to specific task domains, an LLM pre-trained on a
general-purpose corpus may exhibit a deficit or inadequacy in two types of
domain-specific knowledge. One is a comprehensive set of domain data that is
typically large-scale and continuously evolving. The other is specific working
patterns of this domain reflected in the data. The absence or inadequacy of
such knowledge impacts the performance of the LLM. In this paper, we propose a
general paradigm that augments LLMs with DOmain-specific KnowledgE to enhance
their performance on practical applications, namely DOKE. This paradigm relies
on a domain knowledge extractor, working in three steps: 1) preparing effective
knowledge for the task; 2) selecting the knowledge for each specific sample;
and 3) expressing the knowledge in an LLM-understandable way. Then, the
extracted knowledge is incorporated through prompts, without any computational
cost of model fine-tuning. We instantiate the general paradigm on a widespread
application, i.e. recommender systems, where critical item attributes and
collaborative filtering signals are incorporated. Experimental results
demonstrate that DOKE can substantially improve the performance of LLMs in
specific domains.
- Abstract(参考訳): 大規模言語モデル(LLM)の大幅な進歩は、様々な実用アプリケーションのための人間のようなシステムを構築するための有望な機会を提供する。
しかし、特定のタスク領域に適用される場合、汎用コーパスで事前訓練されたllmは、2種類のドメイン固有の知識において不足または不足を示す可能性がある。
ひとつは包括的なドメインデータの集合で、通常は大規模で継続的に進化する。
もうひとつは、データに反映されたこのドメインの特定のワーキングパターンです。
このような知識の欠如や不十分さはLLMのパフォーマンスに影響を及ぼす。
本稿では,DOmain-specific KnowledgE を用いて LLM を拡張し,その実用性,すなわち DOKE の性能を向上させるための一般化パラダイムを提案する。
このパラダイムはドメイン知識抽出に頼り、3つのステップで作業します。
1) 業務に有効な知識を準備すること
2) 特定のサンプルごとに知識を選択すること,及び
3) LLMで理解可能な方法で知識を表現すること。
そして、抽出した知識は、モデル微調整の計算コストを伴わず、プロンプトを通じて組み込まれる。
批判的項目属性と協調的フィルタリング信号が組み込まれている,広範なアプリケーション,すなわちレコメンダシステム上で,一般的なパラダイムをインスタンス化する。
実験により,DOKEは特定の領域におけるLLMの性能を大幅に向上できることが示された。
関連論文リスト
- Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
ドメインドリフト下でのLarge Language Models (LLM) を用いた抽出質問応答(EQA)について検討する。
パフォーマンスギャップを実証的に説明するための一連の実験を考案する。
論文 参考訳(メタデータ) (2024-09-27T05:06:43Z) - Improving Sample Efficiency of Reinforcement Learning with Background Knowledge from Large Language Models [33.504700578933424]
低サンプリング効率は強化学習(RL)の持続的課題である
環境の背景知識を抽出するために,大規模言語モデルを利用するフレームワークを導入する。
実験により, 下流タスクのスペクトルにおいて, サンプル効率が著しく向上することが確認された。
論文 参考訳(メタデータ) (2024-07-04T14:33:47Z) - More Than Catastrophic Forgetting: Integrating General Capabilities For Domain-Specific LLMs [40.54076184225558]
大言語モデル(LLM)がドメイン固有のタスクに微調整された後に、一般的なタスクのパフォーマンスが低下する。
本稿では,一般能力統合(GCI)と呼ばれる,CFを越えたドメイン固有LLMの実適用に向けた課題について述べる。
GCIの目的は、新たに獲得した汎用能力を、新しいドメイン知識と共に保持するだけでなく、両方のスキルセットを結合的に調和して利用して、ドメイン固有のタスクのパフォーマンスを高めることである。
論文 参考訳(メタデータ) (2024-05-28T05:00:12Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
大規模言語モデル(LLM)は多用途であり、多様なタスクに対処することができる。
従来のアプローチでは、ドメイン固有のデータによる継続的な事前トレーニングを行うか、一般的なLLMをサポートするために検索拡張を採用する。
BLADEと呼ばれる新しいフレームワークを提案する。このフレームワークは、小さなDomain-spEcificモデルでブラックボックスのLArge言語モデルを拡張する。
論文 参考訳(メタデータ) (2024-03-27T08:57:21Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - PANDA: Preference Adaptation for Enhancing Domain-Specific Abilities of LLMs [49.32067576992511]
大規模言語モデルは、しばしばドメイン固有の最先端モデルによって達成されるパフォーマンスに欠ける。
LLMのドメイン固有の機能を強化する1つの潜在的アプローチは、対応するデータセットを使用してそれらを微調整することである。
LLM(PANDA)のドメイン固有能力を高めるための優先度適応法を提案する。
実験の結果,PANDA はテキスト分類や対話型意思決定タスクにおいて LLM のドメイン固有性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-20T09:02:55Z) - Tag-LLM: Repurposing General-Purpose LLMs for Specialized Domains [9.600277231719874]
大規模言語モデル(LLM)は、自然言語の理解と生成に顕著な能力を示した。
本研究は、汎用LLMを特殊領域の効率的なタスク解決器に再利用する方法を探求する。
論文 参考訳(メタデータ) (2024-02-06T20:11:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - On the Effectiveness of Large Language Models in Domain-Specific Code Generation [20.61882220430463]
ChatGPTのような大規模言語モデル(LLM)は、コード生成において顕著な能力を示している。
コード生成プロセスにAPI知識を効果的に組み込む方法について検討する。
私たちはこれらの戦略を、DomCoderと呼ばれる新しいコード生成アプローチと呼んでいる。
論文 参考訳(メタデータ) (2023-12-04T05:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。