A BERT based Ensemble Approach for Sentiment Classification of Customer
Reviews and its Application to Nudge Marketing in e-Commerce
- URL: http://arxiv.org/abs/2311.10782v1
- Date: Thu, 16 Nov 2023 14:18:24 GMT
- Title: A BERT based Ensemble Approach for Sentiment Classification of Customer
Reviews and its Application to Nudge Marketing in e-Commerce
- Authors: Sayan Putatunda and Anwesha Bhowmik and Girish Thiruvenkadam and Rahul
Ghosh
- Abstract summary: Product reviews improve customer trust and loyalty.
Nudge marketing is a subtle way for an ecommerce company to help their customers make better decisions without hesitation.
- Score: 2.2120851074630177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: According to the literature, Product reviews are an important source of
information for customers to support their buying decision. Product reviews
improve customer trust and loyalty. Reviews help customers in understanding
what other customers think about a particular product and helps in driving
purchase decisions. Therefore, for an e-commerce platform it is important to
understand the sentiments in customer reviews to understand their products and
services, and it also allows them to potentially create positive consumer
interaction as well as long lasting relationships. Reviews also provide
innovative ways to market the products for an ecommerce company. One such
approach is Nudge Marketing. Nudge marketing is a subtle way for an ecommerce
company to help their customers make better decisions without hesitation.
Related papers
- Information Discovery in e-Commerce [97.71958017283593]
Information retrieval has a natural role to play in e-commerce, especially in connecting people to goods and services.
The rise in popularity of e-commerce sites has made research on information discovery in e-commerce an increasingly active research area.
Methods for information discovery in e-commerce largely focus on improving the effectiveness of e-commerce search and recommender systems.
arXiv Detail & Related papers (2024-10-08T07:41:01Z) - IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce [71.37481473399559]
In this paper, we present IntentionQA, a benchmark to evaluate LMs' comprehension of purchase intentions in E-commerce.
IntentionQA consists of 4,360 carefully curated problems across three difficulty levels, constructed using an automated pipeline.
Human evaluations demonstrate the high quality and low false-negative rate of our benchmark.
arXiv Detail & Related papers (2024-06-14T16:51:21Z) - Learning to Personalize Recommendation based on Customers' Shopping
Intents [6.503955510722271]
We introduce Amazon's new system that explicitly identifies and utilizes each customer's high level shopping intents for personalizing recommendations.
We develop a novel technique that automatically identifies various high level goals being pursued by the Amazon customers, such as "go camping", and "preparing for a beach party"
Our solution is in a scalable fashion (in 14 languages across 21 countries)
arXiv Detail & Related papers (2023-05-09T09:06:46Z) - Finding Lookalike Customers for E-Commerce Marketing [5.2300714255564795]
We present a scalable and efficient system to expand targeted audience of marketing campaigns.
We use a deep learning based embedding model to represent customers and an approximate nearest neighbor search method to quickly find lookalike customers of interest.
arXiv Detail & Related papers (2023-01-09T02:18:58Z) - Incorporating Customer Reviews in Size and Fit Recommendation systems
for Fashion E-Commerce [2.8360662552057323]
We propose a novel approach which can use information from customer reviews along with customer and product features for size and fit predictions.
Our method shows an improvement of 1.37% - 4.31% in F1 (macro) score over the baseline across the 4 different datasets.
arXiv Detail & Related papers (2022-08-11T16:47:25Z) - Personality-Driven Social Multimedia Content Recommendation [68.46899477180837]
We investigate the impact of human personality traits on the content recommendation model by applying a novel personality-driven multi-view content recommender system.
Our experimental results and real-world case study demonstrate not just PersiC's ability to perform efficient human personality-driven multi-view content recommendation, but also allow for actionable digital ad strategy recommendations.
arXiv Detail & Related papers (2022-07-25T14:37:18Z) - Towards Personalized Answer Generation in E-Commerce via
Multi-Perspective Preference Modeling [62.049330405736406]
Product Question Answering (PQA) on E-Commerce platforms has attracted increasing attention as it can act as an intelligent online shopping assistant.
It is insufficient to provide the same "completely summarized" answer to all customers, since many customers are more willing to see personalized answers with customized information only for themselves.
We propose a novel multi-perspective user preference model for generating personalized answers in PQA.
arXiv Detail & Related papers (2021-12-27T07:51:49Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
This work reports a method to learn the shopping preferences of frequent shoppers to an online gift store by combining ideas from retail analytics and statistical learning with sparsity.
arXiv Detail & Related papers (2021-11-11T05:36:39Z) - Mining Customers' Opinions for Online Reputation Generation and
Visualization in e-Commerce Platforms [0.0]
Customer reviews represent a very rich data source from which we can extract very valuable information about different online shopping experiences.
My research goal in this thesis is to develop reputation systems that can automatically provide E-commerce customers with valuable information to support them during their online decision-making process by mining online reviews expressed in natural language.
arXiv Detail & Related papers (2021-04-05T14:46:57Z) - User-Inspired Posterior Network for Recommendation Reason Generation [53.035224183349385]
Recommendation reason generation plays a vital role in attracting customers' attention as well as improving user experience.
We propose a user-inspired multi-source posterior transformer (MSPT), which induces the model reflecting the users' interests.
Experimental results show that our model is superior to traditional generative models.
arXiv Detail & Related papers (2021-02-16T02:08:52Z) - Feature-level Rating System using Customer Reviews and Review Votes [2.943984871413744]
We analyze the customer reviews collected on an online shopping site (Amazon) about various mobile products and the review votes.
Our analysis yields ratings to 108 features for 4k+ mobiles sold online.
arXiv Detail & Related papers (2020-07-18T20:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.