Customer Analytics using Surveillance Video
- URL: http://arxiv.org/abs/2503.00452v1
- Date: Sat, 01 Mar 2025 11:26:31 GMT
- Title: Customer Analytics using Surveillance Video
- Authors: Earnest Paul Ijjina, Aniruddha Srinivas Joshi, Goutham Kanahasabai, Keerthi Priyanka P,
- Abstract summary: This work proposes a novel approach to analyse the shopping behaviour of customers to identify their purchase patterns.<n>An extended version of the Multi-Cluster Overlapping k-Means Extension (MCOKE) algorithm with weighted k-Means algorithm is utilized to map customers to the garments of interest.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The analysis of sales information, is a vital step in designing an effective marketing strategy. This work proposes a novel approach to analyse the shopping behaviour of customers to identify their purchase patterns. An extended version of the Multi-Cluster Overlapping k-Means Extension (MCOKE) algorithm with weighted k-Means algorithm is utilized to map customers to the garments of interest. The age & gender traits of the customer; the time spent and the expressions exhibited while selecting garments for purchase, are utilized to associate a customer or a group of customers to a garments they are interested in. Such study on the customer base of a retail business, may help in inferring the products of interest of their consumers, and enable them in developing effective business strategies, thus ensuring customer satisfaction, loyalty, increased sales and profits.
Related papers
- Personalized Federated Knowledge Graph Embedding with Client-Wise Relation Graph [49.66272783945571]
We propose Personalized Federated knowledge graph Embedding with client-wise relation graph.
PFedEG learns personalized supplementary knowledge for each client by amalgamating entity embedding from its neighboring clients.
We conduct extensive experiments on four benchmark datasets to evaluate our method against state-of-the-art models.
arXiv Detail & Related papers (2024-06-17T17:44:53Z) - Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
We propose a novel client selection strategy designed to emulate the performance achieved with full client participation.
In a single round, we select clients by minimizing the gradient-space estimation error between the client subset and the full client set.
In multi-round selection, we introduce a novel individual fairness constraint, which ensures that clients with similar data distributions have similar frequencies of being selected.
arXiv Detail & Related papers (2024-05-22T12:27:24Z) - FilFL: Client Filtering for Optimized Client Participation in Federated Learning [71.46173076298957]
Federated learning enables clients to collaboratively train a model without exchanging local data.
Clients participating in the training process significantly impact the convergence rate, learning efficiency, and model generalization.
We propose a novel approach, client filtering, to improve model generalization and optimize client participation and training.
arXiv Detail & Related papers (2023-02-13T18:55:31Z) - Customer Profiling, Segmentation, and Sales Prediction using AI in
Direct Marketing [0.0]
This paper proposes a data mining preprocessing method for developing a customer profiling system to improve sales performance.
The main result of this study is the creation of a customer profile and forecast for the sale of goods.
arXiv Detail & Related papers (2023-02-03T14:45:09Z) - Finding Lookalike Customers for E-Commerce Marketing [5.2300714255564795]
We present a scalable and efficient system to expand targeted audience of marketing campaigns.
We use a deep learning based embedding model to represent customers and an approximate nearest neighbor search method to quickly find lookalike customers of interest.
arXiv Detail & Related papers (2023-01-09T02:18:58Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
We propose a framework relying solely on chat-based customer support interactions for predicting the recommendation decision of individual users.
For our case study, we analyzed a total number of 16.4k users and 48.7k customer support conversations within the financial vertical of a large e-commerce company in Latin America.
Our results show that, with respective feature interpretability, it is possible to predict the likelihood of a user to recommend a product or service, based solely on the message-wise sentiment evolution of their CS conversations in a fully automated way.
arXiv Detail & Related papers (2022-11-08T00:43:36Z) - Towards Revenue Maximization with Popular and Profitable Products [69.21810902381009]
A common goal for companies marketing is to maximize the return revenue/profit by utilizing the various effective marketing strategies.
Finding credible and reliable information on products' profitability is difficult since most products tends to peak at certain times.
This paper proposes a general profit-oriented framework to address the problem of revenue based on economic behavior, and conducting the 0n-shelf Popular and most Profitable Products (OPPPs) for the targeted marketing.
arXiv Detail & Related papers (2022-02-26T02:07:25Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
This work reports a method to learn the shopping preferences of frequent shoppers to an online gift store by combining ideas from retail analytics and statistical learning with sparsity.
arXiv Detail & Related papers (2021-11-11T05:36:39Z) - OPAM: Online Purchasing-behavior Analysis using Machine learning [0.8121462458089141]
We present a customer purchasing behavior analysis system using supervised, unsupervised and semi-supervised learning methods.
The proposed system analyzes session and user-journey level purchasing behaviors to identify customer categories/clusters.
arXiv Detail & Related papers (2021-02-02T17:29:52Z) - Dynamically Tie the Right Offer to the Right Customer in
Telecommunications Industry [0.0]
This work presents a conceptual model by studying the significant campaign-dependent variables of customer targeting.
The outcomes of customer segmentation of this study could be more meaningful and relevant for marketers.
arXiv Detail & Related papers (2020-10-18T16:44:51Z) - Face to Purchase: Predicting Consumer Choices with Structured Facial and
Behavioral Traits Embedding [53.02059906193556]
We propose to predict consumers' purchases based on their facial features and purchasing histories.
We design a semi-supervised model based on a hierarchical embedding network to extract high-level features of consumers.
Our experimental results on a real-world dataset demonstrate the positive effect of incorporating facial information in predicting consumers' purchasing behaviors.
arXiv Detail & Related papers (2020-07-14T06:06:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.