INSPECT: A Multimodal Dataset for Pulmonary Embolism Diagnosis and
Prognosis
- URL: http://arxiv.org/abs/2311.10798v1
- Date: Fri, 17 Nov 2023 07:28:16 GMT
- Title: INSPECT: A Multimodal Dataset for Pulmonary Embolism Diagnosis and
Prognosis
- Authors: Shih-Cheng Huang, Zepeng Huo, Ethan Steinberg, Chia-Chun Chiang,
Matthew P. Lungren, Curtis P. Langlotz, Serena Yeung, Nigam H. Shah, Jason A.
Fries
- Abstract summary: We introduce INSPECT, which contains de-identified longitudinal records from a large cohort of patients at risk for pulmonary embolism (PE)
INSPECT contains data from 19,402 patients, including CT images, radiology report impression sections, and structured electronic health record (EHR) data (i.e. demographics, diagnoses, procedures, vitals, and medications)
- Score: 19.32686665459374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthesizing information from multiple data sources plays a crucial role in
the practice of modern medicine. Current applications of artificial
intelligence in medicine often focus on single-modality data due to a lack of
publicly available, multimodal medical datasets. To address this limitation, we
introduce INSPECT, which contains de-identified longitudinal records from a
large cohort of patients at risk for pulmonary embolism (PE), along with ground
truth labels for multiple outcomes. INSPECT contains data from 19,402 patients,
including CT images, radiology report impression sections, and structured
electronic health record (EHR) data (i.e. demographics, diagnoses, procedures,
vitals, and medications). Using INSPECT, we develop and release a benchmark for
evaluating several baseline modeling approaches on a variety of important PE
related tasks. We evaluate image-only, EHR-only, and multimodal fusion models.
Trained models and the de-identified dataset are made available for
non-commercial use under a data use agreement. To the best of our knowledge,
INSPECT is the largest multimodal dataset integrating 3D medical imaging and
EHR for reproducible methods evaluation and research.
Related papers
- FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models.
FEDMEKI allows medical foundation models to learn from a broader spectrum of medical knowledge without direct data exposure.
arXiv Detail & Related papers (2024-08-17T15:18:56Z) - EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGE is a Retrieval-Augmented Generation driven framework aimed at enhancing multimodal EHR predictive modeling.
Our approach extracts entities from both time-series data and clinical notes by prompting Large Language Models.
The extracted knowledge is then used to generate task-relevant summaries of patients' health statuses.
arXiv Detail & Related papers (2024-05-27T10:53:15Z) - HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling [4.44283662576491]
We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements.
We show that our framework outperforms both single-modality models and state-of-the-art MRI-tabular data fusion methods.
arXiv Detail & Related papers (2024-03-20T05:50:04Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
We propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation.
First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design.
We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data.
arXiv Detail & Related papers (2024-01-22T01:58:32Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Towards Generalist Foundation Model for Radiology by Leveraging
Web-scale 2D&3D Medical Data [66.9359934608229]
This study aims to initiate the development of Radiology Foundation Model, termed as RadFM.
To the best of our knowledge, this is the first large-scale, high-quality, medical visual-language dataset, with both 2D and 3D scans.
We propose a new evaluation benchmark, RadBench, that comprises five tasks, including modality recognition, disease diagnosis, visual question answering, report generation and rationale diagnosis.
arXiv Detail & Related papers (2023-08-04T17:00:38Z) - Artificial Intelligence-Based Methods for Fusion of Electronic Health
Records and Imaging Data [0.9749560288448113]
We focus on synthesizing and analyzing the literature that uses AI techniques to fuse multimodal medical data for different clinical applications.
We present a comprehensive analysis of the various fusion strategies, the diseases and clinical outcomes for which multimodal fusion was used, and the available multimodal medical datasets.
arXiv Detail & Related papers (2022-10-23T07:13:37Z) - MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis [10.133715767542386]
We propose a knowledge-driven and data-driven framework for lung disease diagnosis.
We formulate diagnosis rules according to authoritative clinical medicine guidelines and learn the weights of rules from text data.
A multimodal fusion consisting of text and image data is designed to infer the marginal probability of lung disease.
arXiv Detail & Related papers (2022-02-09T04:12:30Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.