FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection
- URL: http://arxiv.org/abs/2408.09227v1
- Date: Sat, 17 Aug 2024 15:18:56 GMT
- Title: FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection
- Authors: Jiaqi Wang, Xiaochen Wang, Lingjuan Lyu, Jinghui Chen, Fenglong Ma,
- Abstract summary: FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models.
FEDMEKI allows medical foundation models to learn from a broader spectrum of medical knowledge without direct data exposure.
- Score: 83.54960238236548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces the Federated Medical Knowledge Injection (FEDMEKI) platform, a new benchmark designed to address the unique challenges of integrating medical knowledge into foundation models under privacy constraints. By leveraging a cross-silo federated learning approach, FEDMEKI circumvents the issues associated with centralized data collection, which is often prohibited under health regulations like the Health Insurance Portability and Accountability Act (HIPAA) in the USA. The platform is meticulously designed to handle multi-site, multi-modal, and multi-task medical data, which includes 7 medical modalities, including images, signals, texts, laboratory test results, vital signs, input variables, and output variables. The curated dataset to validate FEDMEKI covers 8 medical tasks, including 6 classification tasks (lung opacity detection, COVID-19 detection, electrocardiogram (ECG) abnormal detection, mortality prediction, sepsis prediction, and enlarged cardiomediastinum detection) and 2 generation tasks (medical visual question answering (MedVQA) and ECG noise clarification). This comprehensive dataset is partitioned across several clients to facilitate the decentralized training process under 16 benchmark approaches. FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models by allowing them to learn from a broader spectrum of medical knowledge without direct data exposure, thereby setting a new benchmark in the application of foundation models within the healthcare sector.
Related papers
- FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - AutoMIR: Effective Zero-Shot Medical Information Retrieval without Relevance Labels [19.90354530235266]
We introduce a novel approach called Self-Learning Hypothetical Document Embeddings (SL-HyDE) to tackle this issue.
SL-HyDE leverages large language models (LLMs) as generators to generate hypothetical documents based on a given query.
We present the Chinese Medical Information Retrieval Benchmark (CMIRB), a comprehensive evaluation framework grounded in real-world medical scenarios.
arXiv Detail & Related papers (2024-10-26T02:53:20Z) - FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models [54.09244105445476]
This study introduces a novel knowledge injection approach, FedKIM, to scale the medical foundation model within a federated learning framework.
FedKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model.
Our experiments across twelve tasks in seven modalities demonstrate the effectiveness of FedKIM in various settings.
arXiv Detail & Related papers (2024-08-17T15:42:29Z) - Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare [14.399086205317358]
Foundation models (FMs) are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback.
These models are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.
The incorporation of FL with these sophisticated models presents a promising strategy to harness their analytical power while safeguarding the privacy of sensitive medical data.
arXiv Detail & Related papers (2024-05-10T19:22:24Z) - A Distributed Privacy Preserving Model for the Detection of Alzheimer's Disease [0.0]
This paper introduces a HIPAA compliant framework that can train from distributed data.
I then propose a multimodal vertical federated model for Alzheimer's Disease (AD) detection.
The VFL architecture proposed herein offers a novel distributed architecture, enabling collaborative learning across diverse sources of medical data.
arXiv Detail & Related papers (2023-12-15T22:09:04Z) - DeepMediX: A Deep Learning-Driven Resource-Efficient Medical Diagnosis
Across the Spectrum [15.382184404673389]
This work presents textttDeepMediX, a groundbreaking, resource-efficient model that significantly addresses this challenge.
Built on top of the MobileNetV2 architecture, DeepMediX excels in classifying brain MRI scans and skin cancer images.
DeepMediX's design also includes the concept of Federated Learning, enabling a collaborative learning approach without compromising data privacy.
arXiv Detail & Related papers (2023-07-01T12:30:58Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
We propose an interpretable instrumental variable (IV) learning framework to eliminate the spurious association and obtain accurate causal representation.
Our approach's performance is demonstrated using the MIMIC-CXR, NIH ChestX-ray 14, and CheXpert datasets.
arXiv Detail & Related papers (2023-05-20T03:12:23Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.