A Study on Altering the Latent Space of Pretrained Text to Speech Models
for Improved Expressiveness
- URL: http://arxiv.org/abs/2311.10804v1
- Date: Fri, 17 Nov 2023 13:07:00 GMT
- Title: A Study on Altering the Latent Space of Pretrained Text to Speech Models
for Improved Expressiveness
- Authors: Mathias Vogel
- Abstract summary: The paper identifies the challenges encountered when working with a VAE-based TTS model and evaluates different image-to-image methods for altering latent speech features.
Our results offer valuable insights into the complexities of adding expressiveness control to TTS systems and open avenues for future research in this direction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This report explores the challenge of enhancing expressiveness control in
Text-to-Speech (TTS) models by augmenting a frozen pretrained model with a
Diffusion Model that is conditioned on joint semantic audio/text embeddings.
The paper identifies the challenges encountered when working with a VAE-based
TTS model and evaluates different image-to-image methods for altering latent
speech features. Our results offer valuable insights into the complexities of
adding expressiveness control to TTS systems and open avenues for future
research in this direction.
Related papers
- SUTA-LM: Bridging Test-Time Adaptation and Language Model Rescoring for Robust ASR [58.31068047426522]
Test-Time Adaptation (TTA) aims to mitigate by adjusting models during inference.<n>Recent work explores combining TTA with external language models, using techniques like beam search rescoring or generative error correction.<n>We propose SUTA-LM, a simple yet effective extension of SUTA, with language model rescoring.<n> Experiments on 18 diverse ASR datasets show that SUTA-LM achieves robust results across a wide range of domains.
arXiv Detail & Related papers (2025-06-10T02:50:20Z) - A Novel Data Augmentation Approach for Automatic Speaking Assessment on Opinion Expressions [3.505838221203969]
We propose a novel training paradigm to generate diverse responses of a given proficiency level.<n>We convert responses into synthesized speech via speaker-aware text-to-speech synthesis.<n>A multimodal large language model integrates aligned textual features with speech signals to predict proficiency scores directly.
arXiv Detail & Related papers (2025-06-04T15:42:53Z) - DEX-TTS: Diffusion-based EXpressive Text-to-Speech with Style Modeling on Time Variability [7.005068872406135]
Diffusion-based EXpressive TTS (DEX-TTS) is an acoustic model designed for reference-based speech synthesis with enhanced style representations.
DEX-TTS includes encoders and adapters to handle styles extracted from reference speech.
In addition, we introduce overlapping patchify and convolution-frequency patch embedding strategies to improve DiT-based diffusion networks for TTS.
arXiv Detail & Related papers (2024-06-27T12:39:55Z) - Phonetic Enhanced Language Modeling for Text-to-Speech Synthesis [33.909582975045545]
We propose a phonetic enhanced language modeling method to improve the performance of TTS models.
We leverage self-supervised representations that are phonetically rich as the training target for the autoregressive language model.
arXiv Detail & Related papers (2024-06-04T06:43:34Z) - Transduce and Speak: Neural Transducer for Text-to-Speech with Semantic
Token Prediction [14.661123738628772]
We introduce a text-to-speech(TTS) framework based on a neural transducer.
We use discretized semantic tokens acquired from wav2vec2.0 embeddings, which makes it easy to adopt a neural transducer for the TTS framework enjoying its monotonic alignment constraints.
arXiv Detail & Related papers (2023-11-06T06:13:39Z) - High-Fidelity Speech Synthesis with Minimal Supervision: All Using
Diffusion Models [56.00939852727501]
Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations.
Non-autoregressive framework enhances controllability, and duration diffusion model enables diversified prosodic expression.
arXiv Detail & Related papers (2023-09-27T09:27:03Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - Minimally-Supervised Speech Synthesis with Conditional Diffusion Model
and Language Model: A Comparative Study of Semantic Coding [57.42429912884543]
We propose Diff-LM-Speech, Tetra-Diff-Speech and Tri-Diff-Speech to solve high dimensionality and waveform distortion problems.
We also introduce a prompt encoder structure based on a variational autoencoder and a prosody bottleneck to improve prompt representation ability.
Experimental results show that our proposed methods outperform baseline methods.
arXiv Detail & Related papers (2023-07-28T11:20:23Z) - DiffVoice: Text-to-Speech with Latent Diffusion [18.150627638754923]
We present DiffVoice, a novel text-to-speech model based on latent diffusion.
Subjective evaluations on LJSpeech and LibriTTS datasets demonstrate that our method beats the best publicly available systems in naturalness.
arXiv Detail & Related papers (2023-04-23T21:05:33Z) - Text-to-image Diffusion Models in Generative AI: A Survey [86.11421833017693]
This survey reviews the progress of diffusion models in generating images from text.
We discuss applications beyond image generation, such as text-guided generation for various modalities like videos, and text-guided image editing.
arXiv Detail & Related papers (2023-03-14T13:49:54Z) - Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image
Diffusion Models [103.61066310897928]
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt.
While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt.
We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt.
We introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness
arXiv Detail & Related papers (2023-01-31T18:10:38Z) - STYLER: Style Modeling with Rapidity and Robustness via
SpeechDecomposition for Expressive and Controllable Neural Text to Speech [2.622482339911829]
STYLER is a novel expressive text-to-speech model with parallelized architecture.
Our novel noise modeling approach from audio using domain adversarial training and Residual Decoding enabled style transfer without transferring noise.
arXiv Detail & Related papers (2021-03-17T07:11:09Z) - Hierarchical Prosody Modeling for Non-Autoregressive Speech Synthesis [76.39883780990489]
We analyze the behavior of non-autoregressive TTS models under different prosody-modeling settings.
We propose a hierarchical architecture, in which the prediction of phoneme-level prosody features are conditioned on the word-level prosody features.
arXiv Detail & Related papers (2020-11-12T16:16:41Z) - End-to-End Text-to-Speech using Latent Duration based on VQ-VAE [48.151894340550385]
Explicit duration modeling is a key to achieving robust and efficient alignment in text-to-speech synthesis (TTS)
We propose a new TTS framework using explicit duration modeling that incorporates duration as a discrete latent variable to TTS.
arXiv Detail & Related papers (2020-10-19T15:34:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.