Learning Payment-Free Resource Allocation Mechanisms
- URL: http://arxiv.org/abs/2311.10927v3
- Date: Wed, 14 Aug 2024 05:54:52 GMT
- Title: Learning Payment-Free Resource Allocation Mechanisms
- Authors: Sihan Zeng, Sujay Bhatt, Eleonora Kreacic, Parisa Hassanzadeh, Alec Koppel, Sumitra Ganesh,
- Abstract summary: We consider the design of mechanisms that limited resources among self-interested agents using neural networks.
We contribute a new end-to-end neural network architecture, ExS-Net, that accommodates the idea of "money-burning" for mechanism design without payments.
- Score: 19.60309632660988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the design of mechanisms that allocate limited resources among self-interested agents using neural networks. Unlike the recent works that leverage machine learning for revenue maximization in auctions, we consider welfare maximization as the key objective in the payment-free setting. Without payment exchange, it is unclear how we can align agents' incentives to achieve the desired objectives of truthfulness and social welfare simultaneously, without resorting to approximations. Our work makes novel contributions by designing an approximate mechanism that desirably trade-off social welfare with truthfulness. Specifically, (i) we contribute a new end-to-end neural network architecture, ExS-Net, that accommodates the idea of "money-burning" for mechanism design without payments; (ii)~we provide a generalization bound that guarantees the mechanism performance when trained under finite samples; and (iii) we provide an experimental demonstration of the merits of the proposed mechanism.
Related papers
- Deep Learning Meets Mechanism Design: Key Results and Some Novel
Applications [1.2661010067882734]
We present, from relevant literature, technical details of using a deep learning approach for mechanism design.
We demonstrate the power of this approach for three illustrative case studies.
arXiv Detail & Related papers (2024-01-11T06:09:32Z) - Refined Mechanism Design for Approximately Structured Priors via Active
Regression [50.71772232237571]
We consider the problem of a revenue-maximizing seller with a large number of items for sale to $n$ strategic bidders.
It is well-known that optimal and even approximately-optimal mechanisms for this setting are notoriously difficult to characterize or compute.
arXiv Detail & Related papers (2023-10-11T20:34:17Z) - No Bidding, No Regret: Pairwise-Feedback Mechanisms for Digital Goods
and Data Auctions [14.87136964827431]
This study presents a novel mechanism design addressing a general repeated-auction setting.
The mechanism's novelty lies in using pairwise comparisons for eliciting information from the bidder.
Our focus on human factors contributes to the development of more human-aware and efficient mechanism design.
arXiv Detail & Related papers (2023-06-02T18:29:07Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z) - Learning Dynamic Mechanisms in Unknown Environments: A Reinforcement
Learning Approach [130.9259586568977]
We propose novel learning algorithms to recover the dynamic Vickrey-Clarke-Grove (VCG) mechanism over multiple rounds of interaction.
A key contribution of our approach is incorporating reward-free online Reinforcement Learning (RL) to aid exploration over a rich policy space.
arXiv Detail & Related papers (2022-02-25T16:17:23Z) - Online Auction-Based Incentive Mechanism Design for Horizontal Federated
Learning with Budget Constraint [9.503584357135832]
Federated learning makes it possible for all parties with data isolation to train the model collaboratively and efficiently.
To obtain a high-quality model, an incentive mechanism is necessary to motivate more high-quality workers with data and computing power.
We propose a reverse auction-based online incentive mechanism for horizontal federated learning with budget constraint.
arXiv Detail & Related papers (2022-01-22T13:37:52Z) - Learning Revenue-Maximizing Auctions With Differentiable Matching [50.62088223117716]
We propose a new architecture to approximately learn incentive compatible, revenue-maximizing auctions from sampled valuations.
Our architecture uses the Sinkhorn algorithm to perform a differentiable bipartite matching which allows the network to learn strategyproof revenue-maximizing mechanisms.
arXiv Detail & Related papers (2021-06-15T04:37:57Z) - VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit
Feedback [104.06766271716774]
We study a multi-round welfare-maximising mechanism design problem in instances where agents do not know their values.
We first define three notions of regret for the welfare, the individual utilities of each agent and that of the mechanism.
Our framework also provides flexibility to control the pricing scheme so as to trade-off between the agent and seller regrets.
arXiv Detail & Related papers (2020-04-19T18:00:58Z) - Generalization Guarantees for Multi-item Profit Maximization: Pricing,
Auctions, and Randomized Mechanisms [86.81403511861788]
We study multi-item profit when there is an underlying distribution over buyers' values.
For any set of buyers' values, profit is piecewise linear in the mechanism's parameters.
We prove new bounds for mechanism classes not yet in the sample-based mechanism design literature.
arXiv Detail & Related papers (2017-04-29T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.