Deception Detection from Linguistic and Physiological Data Streams Using Bimodal Convolutional Neural Networks
- URL: http://arxiv.org/abs/2311.10944v5
- Date: Tue, 12 Nov 2024 08:31:22 GMT
- Title: Deception Detection from Linguistic and Physiological Data Streams Using Bimodal Convolutional Neural Networks
- Authors: Panfeng Li, Mohamed Abouelenien, Rada Mihalcea, Zhicheng Ding, Qikai Yang, Yiming Zhou,
- Abstract summary: This paper explores the application of convolutional neural networks for the purpose of multimodal deception detection.
We use a dataset built by interviewing 104 subjects about two topics, with one truthful and one falsified response from each subject about each topic.
- Score: 19.639533220155965
- License:
- Abstract: Deception detection is gaining increasing interest due to ethical and security concerns. This paper explores the application of convolutional neural networks for the purpose of multimodal deception detection. We use a dataset built by interviewing 104 subjects about two topics, with one truthful and one falsified response from each subject about each topic. In particular, we make three main contributions. First, we extract linguistic and physiological features from this data to train and construct the neural network models. Second, we propose a fused convolutional neural network model using both modalities in order to achieve an improved overall performance. Third, we compare our new approach with earlier methods designed for multimodal deception detection. We find that our system outperforms regular classification methods; our results indicate the feasibility of using neural networks for deception detection even in the presence of limited amounts of data.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
This paper proposes a novel post-hoc framework for generating semantic explanations of neurons with large foundation models.
Our framework is designed to be compatible with various model architectures and datasets, automated and scalable neuron interpretation.
arXiv Detail & Related papers (2023-10-16T17:04:51Z) - Spiking Generative Adversarial Network with Attention Scoring Decoding [4.5727987473456055]
Spiking neural networks offer a closer approximation to brain-like processing.
We build a spiking generative adversarial network capable of handling complex images.
arXiv Detail & Related papers (2023-05-17T14:35:45Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - SOCRATES: Towards a Unified Platform for Neural Network Analysis [7.318255652722096]
We aim to build a unified framework for developing techniques to analyze neural networks.
We develop a platform called SOCRATES which supports a standardized format for a variety of neural network models.
Experiment results show that our platform can handle a wide range of networks models and properties.
arXiv Detail & Related papers (2020-07-22T05:18:57Z) - Stochastic encoding of graphs in deep learning allows for complex
analysis of gender classification in resting-state and task functional brain
networks from the UK Biobank [0.13706331473063876]
We introduce a encoding method in an ensemble of CNNs to classify functional connectomes by gender.
We measure the salience of three brain networks involved in task- and resting-states, and their interaction.
arXiv Detail & Related papers (2020-02-25T15:10:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.