Classification of Major Depressive Disorder Using Vertex-Wise Brain Sulcal Depth, Curvature, and Thickness with a Deep and a Shallow Learning Model
- URL: http://arxiv.org/abs/2311.11046v2
- Date: Fri, 24 Jan 2025 13:44:04 GMT
- Title: Classification of Major Depressive Disorder Using Vertex-Wise Brain Sulcal Depth, Curvature, and Thickness with a Deep and a Shallow Learning Model
- Authors: Roberto Goya-Maldonado, Tracy Erwin-Grabner, Ling-Li Zeng, Christopher R. K. Ching, Andre Aleman, Alyssa R. Amod, Zeynep Basgoze, Francesco Benedetti, Bianca Besteher, Katharina Brosch, Robin Bülow, Romain Colle, Colm G. Connolly, Emmanuelle Corruble, Baptiste Couvy-Duchesne, Kathryn Cullen, Udo Dannlowski, Christopher G. Davey, Annemiek Dols, Jan Ernsting, Jennifer W. Evans, Lukas Fisch, Paola Fuentes-Claramonte, Ali Saffet Gonul, Ian H. Gotlib, Hans J. Grabe, Nynke A. Groenewold, Dominik Grotegerd, Tim Hahn, J. Paul Hamilton, Laura K. M. Han, Ben J. Harrison, Tiffany C. Ho, Neda Jahanshad, Alec J. Jamieson, Andriana Karuk, Tilo Kircher, Bonnie Klimes-Dougan, Sheri-Michelle Koopowitz, Thomas Lancaster, Ramona Leenings, Meng Li, David E. J. Linden, Frank P. MacMaster, David M. A. Mehler, Susanne Meinert, Elisa Melloni, Bryon A. Mueller, Benson Mwangi, Igor Nenadić, Amar Ojha, Yasumasa Okamoto, Mardien L. Oudega, Brenda W. J. H. Penninx, Sara Poletti, Edith Pomarol-Clotet, Maria J. Portella, Elena Pozzi, Joaquim Radua, Elena Rodríguez-Cano, Matthew D. Sacchet, Raymond Salvador, Anouk Schrantee, Kang Sim, Jair C. Soares, Aleix Solanes, Dan J. Stein, Frederike Stein, Aleks Stolicyn, Sophia I. Thomopoulos, Yara J. Toenders, Aslihan Uyar-Demir, Eduard Vieta, Yolanda Vives-Gilabert, Henry Völzke, Martin Walter, Heather C. Whalley, Sarah Whittle, Nils Winter, Katharina Wittfeld, Margaret J. Wright, Mon-Ju Wu, Tony T. Yang, Carlos Zarate, Dick J. Veltman, Lianne Schmaal, Paul M. Thompson,
- Abstract summary: Major depressive disorder (MDD) is a complex psychiatric disorder that affects hundreds of millions of individuals around the globe.
The application of deep learning tools to neuroimaging data has the potential to provide diagnostic and predictive biomarkers for MDD.
Previous attempts to demarcate MDD patients and healthy controls (HC) based on segmented cortical features via linear machine learning approaches have reported low accuracies.
- Score: 2.3377726166601693
- License:
- Abstract: Major depressive disorder (MDD) is a complex psychiatric disorder that affects the lives of hundreds of millions of individuals around the globe. Even today, researchers debate if morphological alterations in the brain are linked to MDD, likely due to the heterogeneity of this disorder. The application of deep learning tools to neuroimaging data, capable of capturing complex non-linear patterns, has the potential to provide diagnostic and predictive biomarkers for MDD. However, previous attempts to demarcate MDD patients and healthy controls (HC) based on segmented cortical features via linear machine learning approaches have reported low accuracies. Here, we used globally representative data from the ENIGMA-MDD working group containing 7,012 participants from 30 sites (N=2,772 MDD and N=4,240 HC), which allows a comprehensive analysis with generalizable results. Based on the hypothesis that integration of vertex-wise cortical features can improve classification performance, we evaluated the classification of a DenseNet and a Support Vector Machine (SVM), with the expectation that the former would outperform the latter. We found that both classifiers exhibited close to chance performance (balanced accuracy DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher classification performance (balanced accuracy DenseNet: 58%; SVM: 55%) was found when the cross-validation folds contained subjects from all sites, indicating site effect. In conclusion, the integration of vertex-wise morphometric features and the use of the non-linear classifier did not lead to the differentiability between MDD and HC. Our results support the notion that MDD classification on this combination of such features and classifiers is unfeasible. Perhaps more sophisticated integration of multimodal information may lead to a higher performance in this diagnostic task.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals [4.17085180769512]
Alzheimer's disease (AD) and Frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns.
This study aims to develop a deep learning-based classification system for dementia by analyzing scout time-series signals from deep brain regions.
arXiv Detail & Related papers (2024-08-20T13:11:43Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Multi-feature concatenation and multi-classifier stacking: an
interpretable and generalizable machine learning method for MDD
discrimination with rsfMRI [6.920725855810074]
Machine learning algorithms are developed to exploit the rich information in rsfMRI and discriminate MDD patients from normal controls.
Here, we propose a machine learning method (MFMC) for MDD discrimination by concatenating multiple features and stacking multiple classifiers.
MFMC yields 96.9% MDD discrimination accuracy, demonstrating a significant improvement over existing methods.
arXiv Detail & Related papers (2023-08-18T07:40:56Z) - OpenNDD: Open Set Recognition for Neurodevelopmental Disorders Detection [16.36536069562694]
We design a novel open set recognition framework for ASD-aided diagnosis (OpenNDD)
Considering the strong similarities between NDDs, we present a joint scaling method by Min-Max scaling combined with Standardization (MMS)
Our OpenNDD achieves promising performance, where the accuracy is 77.38%, AUROC is 75.53% and the open set classification rate is as high as 59.43%.
arXiv Detail & Related papers (2023-06-28T09:28:33Z) - Detecting the Severity of Major Depressive Disorder from Speech: A Novel
HARD-Training Methodology [8.832823703632073]
Major Depressive Disorder (MDD) is a common worldwide mental health issue with high associated socioeconomic costs.
The prediction and automatic detection of MDD can, therefore, make a huge impact on society.
RADAR-MDD was an observational cohort study in which speech and other digital biomarkers were collected.
arXiv Detail & Related papers (2022-06-02T13:26:03Z) - HSADML: Hyper-Sphere Angular Deep Metric based Learning for Brain Tumor
Classification [3.319978067919918]
HSADML is a novel framework which enables deep metric learning (DML) using SphereFace Loss.
State-of-the-art 98.69% validation accu-racy using k-NN (k=1)
arXiv Detail & Related papers (2022-01-28T17:37:15Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
We propose a new benchmark for federated domain translation on unsupervised brain image synthesis (termed as FedMed-GAN)
FedMed-GAN mitigates the mode collapse without sacrificing the performance of generators.
A comprehensive evaluation is provided for comparing FedMed-GAN and other centralized methods.
arXiv Detail & Related papers (2022-01-22T02:50:29Z) - Federated Deep AUC Maximization for Heterogeneous Data with a Constant
Communication Complexity [77.78624443410216]
We propose improved FDAM algorithms for detecting heterogeneous chest data.
A result of this paper is that the communication of the proposed algorithm is strongly independent of the number of machines and also independent of the accuracy level.
Experiments have demonstrated the effectiveness of our FDAM algorithm on benchmark datasets and on medical chest Xray images from different organizations.
arXiv Detail & Related papers (2021-02-09T04:05:19Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.