Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals
- URL: http://arxiv.org/abs/2408.10816v1
- Date: Tue, 20 Aug 2024 13:11:43 GMT
- Title: Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals
- Authors: Shivani Ranjan, Ayush Tripathi, Harshal Shende, Robin Badal, Amit Kumar, Pramod Yadav, Deepak Joshi, Lalan Kumar,
- Abstract summary: Alzheimer's disease (AD) and Frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns.
This study aims to develop a deep learning-based classification system for dementia by analyzing scout time-series signals from deep brain regions.
- Score: 4.17085180769512
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Dementia is a neurological syndrome marked by cognitive decline. Alzheimer's disease (AD) and Frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns. EEG, a non-invasive tool for recording brain activity, has shown potential in distinguishing AD from FTD and mild cognitive impairment (MCI). Previous studies have utilized various EEG features, such as subband power and connectivity patterns to differentiate these conditions. However, artifacts in EEG signals can obscure crucial information, necessitating advanced signal processing techniques. This study aims to develop a deep learning-based classification system for dementia by analyzing scout time-series signals from deep brain regions, specifically the hippocampus, amygdala, and thalamus. The study utilizes scout time series extracted via the standardized low-resolution brain electromagnetic tomography (sLORETA) technique. The time series is converted to image representations using continuous wavelet transform (CWT) and fed as input to deep learning models. Two high-density EEG datasets are utilized to check for the efficacy of the proposed method: the online BrainLat dataset (comprising AD, FTD, and healthy controls (HC)) and the in-house IITD-AIIA dataset (including subjects with AD, MCI, and HC). Different classification strategies and classifier combinations have been utilized for the accurate mapping of classes on both datasets. The best results were achieved by using a product of probabilities from classifiers for left and right subcortical regions in conjunction with the DenseNet model architecture. It yields accuracies of 94.17$\%$ and 77.72$\%$ on the BrainLat and IITD-AIIA datasets, respectively. This highlights the potential of this approach for early and accurate differentiation of neurodegenerative disorders.
Related papers
- Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach [5.9091823080038814]
Alzheimer's Disease (AD) is a complex neurodegenerative disorder marked by memory loss, executive dysfunction, and personality changes.
This study introduces an advanced multimodal classification model that integrates clinical, cognitive, neuroimaging, and EEG data.
arXiv Detail & Related papers (2024-08-29T08:26:00Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Recurrent and Convolutional Neural Networks in Classification of EEG Signal for Guided Imagery and Mental Workload Detection [0.9895793818721335]
This paper presents the results of the investigations of a cohort of 26 students exposed to Guided Imagery relaxation technique and mental task workloads conducted with the use of dense array electroencephalographic amplifier.
arXiv Detail & Related papers (2024-05-27T07:49:30Z) - Identifying Alzheimer Disease Dementia Levels Using Machine Learning
Methods [0.0]
We suggest an approach for classifying the four stages of dementia using RF, SVM, and CNN algorithms, augmented with watershed segmentation for feature extraction from MRI images.
Our results reveal that SVM with watershed features achieves an impressive accuracy of 96.25%, surpassing other classification methods.
arXiv Detail & Related papers (2023-11-02T17:44:28Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
We propose an end-to-end deep learning approach for automated diagnosis of Alzheimer's disease (AD) and localization of important brain regions related to the disease from sMRI data.
Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI)
The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods.
arXiv Detail & Related papers (2021-07-28T07:19:00Z) - A Compact and Interpretable Convolutional Neural Network for
Cross-Subject Driver Drowsiness Detection from Single-Channel EEG [4.963467827017178]
We propose a compact and interpretable Convolutional Neural Network (CNN) to discover shared EEG features across different subjects for driver drowsiness detection.
Results show that the proposed model can achieve an average accuracy of 73.22% on 11 subjects for 2-class cross-subject EEG signal classification.
arXiv Detail & Related papers (2021-05-30T14:36:34Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
We propose a 4D convolutional deep learning approach for ASD classification where we jointly learn from spatial and temporal data.
We employ 4D neural networks and convolutional-recurrent models which outperform a previous approach with an F1-score of 0.71 compared to an F1-score of 0.65.
arXiv Detail & Related papers (2020-04-21T17:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.