論文の概要: Tactics2D: A Reinforcement Learning Environment Library with Generative Scenarios for Driving Decision-making
- arxiv url: http://arxiv.org/abs/2311.11058v2
- Date: Sat, 23 Mar 2024 14:49:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 02:25:46.275104
- Title: Tactics2D: A Reinforcement Learning Environment Library with Generative Scenarios for Driving Decision-making
- Title(参考訳): Tactics2D: 意思決定のための生成シナリオを用いた強化学習環境ライブラリ
- Authors: Yueyuan Li, Songan Zhang, Mingyang Jiang, Xingyuan Chen, Ming Yang,
- Abstract要約: Tactics2DはオープンソースのReinforcement Learning環境ライブラリで、多様で困難なトラフィックシナリオを自動生成する。
その第一の目的は、研究者が学習に基づく駆動意思決定モデルを調べるためのアウト・オブ・ボックスツールキットを提供することである。
機能としては、現実世界のログやデータフォーマットとの広範な互換性、カスタマイズ可能なトラフィックシナリオコンポーネント、リッチな組み込み機能テンプレートなどがある。
- 参考スコア(独自算出の注目度): 7.865231751204186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tactics2D is an open-source Reinforcement Learning environment library featured with auto-generation of diverse and challenging traffic scenarios. Its primary goal is to provide an out-of-the-box toolkit for researchers to explore learning-based driving decision-making models. This library implements both rule-based and data-driven approaches to generate interactive traffic scenarios. Noteworthy features of Tactics2D include expansive compatibility with real-world log and data formats, customizable traffic scenario components, and rich built-in functional templates. Developed with user-friendliness in mind, Tactics2D offers detailed documentation and an interactive online tutorial. The software maintains robust reliability, with over 90% code passing unit testing. For access to the source code and participation in discussions, visit the official GitHub page for Tactcis2D at https://github.com/WoodOxen/Tactics2D.
- Abstract(参考訳): Tactics2DはオープンソースのReinforcement Learning環境ライブラリで、多様で困難なトラフィックシナリオを自動生成する。
その第一の目的は、研究者が学習に基づく駆動意思決定モデルを調べるためのアウト・オブ・ボックスツールキットを提供することである。
このライブラリは、対話的なトラフィックシナリオを生成するためのルールベースとデータ駆動のアプローチの両方を実装している。
Tactics2Dの注目すべき機能には、現実世界のログやデータフォーマットとの広範な互換性、カスタマイズ可能なトラフィックシナリオコンポーネント、リッチな組み込み機能テンプレートなどがある。
ユーザフレンドリーを念頭に置いて開発されたTactics2Dは、詳細なドキュメントとインタラクティブなオンラインチュートリアルを提供する。
このソフトウェアは信頼性を保ち、90%以上のコードが単体テストに合格する。
ソースコードへのアクセスと議論への参加については、https://github.com/WoodOxen/Tactics2DのTactcis2Dの公式GitHubページを参照してほしい。
関連論文リスト
- SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - BITS: Bi-level Imitation for Traffic Simulation [38.28736985320897]
データ駆動型アプローチを採用し,実世界の走行ログから交通挙動を学習する手法を提案する。
我々は,2つの大規模運転データセットのシナリオを用いて,BITS(Bi-level Imitation for Traffic Simulation)という手法を実証的に検証した。
コアコントリビューションの一環として、さまざまな駆動データセットにまたがるデータフォーマットを統合するソフトウェアツールを開発し、オープンソース化しています。
論文 参考訳(メタデータ) (2022-08-26T02:17:54Z) - A Hierarchical Pedestrian Behavior Model to Generate Realistic Human
Behavior in Traffic Simulation [11.525073205608681]
本稿では,行動木を用いた階層的歩行者行動モデルを提案する。
私たちの作業の完全な実装は、シナリオ定義と実行エンジンであるGeoScenario Serverに統合されます。
提案モデルでは,実際の歩行者の軌跡を高精度に再現し,意思決定精度を98%以上とした。
論文 参考訳(メタデータ) (2022-06-01T02:04:38Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
VISTAはオープンソースのデータ駆動シミュレータで、複数のタイプのセンサーを自律走行車に組み込む。
高忠実で実世界のデータセットを使用して、VISTAはRGBカメラ、3D LiDAR、イベントベースのカメラを表現し、シミュレートする。
センサタイプ毎に知覚制御ポリシーをトレーニングし,テストする能力を示し,フルスケールの自律走行車への展開を通じて,このアプローチのパワーを示す。
論文 参考訳(メタデータ) (2021-11-23T18:58:10Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。