論文の概要: Environment-Aware Dynamic Graph Learning for Out-of-Distribution
Generalization
- arxiv url: http://arxiv.org/abs/2311.11114v1
- Date: Sat, 18 Nov 2023 16:31:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 10:15:56.505225
- Title: Environment-Aware Dynamic Graph Learning for Out-of-Distribution
Generalization
- Title(参考訳): 分散一般化のための環境対応動的グラフ学習
- Authors: Haonan Yuan, Qingyun Sun, Xingcheng Fu, Ziwei Zhang, Cheng Ji, Hao
Peng, Jianxin Li
- Abstract要約: 本研究では,環境学習の観点から,動的グラフのアウト・オブ・ディストリビューション(OOD)一般化について検討する。
本稿では,複雑な環境をモデル化し,新しいグラフ時間変動パターンを利用するOOD一般化のための環境対応動的グラフ学習(EAGLE)フレームワークを提案する。
我々の知る限りでは、環境学習の観点から動的グラフのOOD一般化を初めて研究する。
- 参考スコア(独自算出の注目度): 41.58330883016538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic graph neural networks (DGNNs) are increasingly pervasive in
exploiting spatio-temporal patterns on dynamic graphs. However, existing works
fail to generalize under distribution shifts, which are common in real-world
scenarios. As the generation of dynamic graphs is heavily influenced by latent
environments, investigating their impacts on the out-of-distribution (OOD)
generalization is critical. However, it remains unexplored with the following
two major challenges: (1) How to properly model and infer the complex
environments on dynamic graphs with distribution shifts? (2) How to discover
invariant patterns given inferred spatio-temporal environments? To solve these
challenges, we propose a novel Environment-Aware dynamic Graph LEarning (EAGLE)
framework for OOD generalization by modeling complex coupled environments and
exploiting spatio-temporal invariant patterns. Specifically, we first design
the environment-aware EA-DGNN to model environments by multi-channel
environments disentangling. Then, we propose an environment instantiation
mechanism for environment diversification with inferred distributions. Finally,
we discriminate spatio-temporal invariant patterns for out-of-distribution
prediction by the invariant pattern recognition mechanism and perform
fine-grained causal interventions node-wisely with a mixture of instantiated
environment samples. Experiments on real-world and synthetic dynamic graph
datasets demonstrate the superiority of our method against state-of-the-art
baselines under distribution shifts. To the best of our knowledge, we are the
first to study OOD generalization on dynamic graphs from the environment
learning perspective.
- Abstract(参考訳): 動的グラフニューラルネットワーク(DGNN)は、動的グラフ上の時空間パターンを利用する際にますます普及している。
しかし、実際のシナリオでは一般的な分布シフトの下では、既存の作業は一般化できない。
動的グラフの生成は潜伏環境の影響を強く受けており、アウト・オブ・ディストリビューション(OOD)の一般化への影響を調べることが重要である。
しかし,(1)分布シフトを伴う動的グラフの複雑な環境を適切にモデル化し,推測する方法という2つの大きな課題は未解決である。
2)推定時空間環境における不変パターンの発見法
これらの課題を解決するために,複雑な結合環境をモデル化し,時空間不変パターンを利用したOOD一般化のための新しい環境対応動的グラフ学習(EAGLE)フレームワークを提案する。
具体的には,マルチチャネル環境を分離して環境をモデル化するための環境対応型ea-dgnnの設計を行った。
次に,推定分布を用いた環境多様化のための環境インスタンス化機構を提案する。
最後に,不変パターン認識機構による分布外予測のための時空間不変パターンを判別し,インスタンス化された環境サンプルの混合とノード単位で細粒度因果的介入を行う。
実世界および合成動的グラフデータセットの実験は、分布シフトの下での最先端のベースラインに対する我々の手法の優位性を実証している。
私たちの知識を最大限に活用するため、我々は環境学習の観点から動的グラフのood一般化を初めて研究した。
関連論文リスト
- SPARTAN: A Sparse Transformer Learning Local Causation [63.29645501232935]
因果構造は、環境の変化に柔軟に適応する世界モデルにおいて中心的な役割を果たす。
本研究では,SPARse TrANsformer World Model(SPARTAN)を提案する。
オブジェクト指向トークン間の注意パターンに空間規則を適用することで、SPARTANは、将来のオブジェクト状態を正確に予測するスパース局所因果モデルを特定する。
論文 参考訳(メタデータ) (2024-11-11T11:42:48Z) - IENE: Identifying and Extrapolating the Node Environment for Out-of-Distribution Generalization on Graphs [10.087216264788097]
ノードレベルの環境識別と外挿技術に基づくグラフのOOD一般化手法であるIENEを提案する。
モデルが2つの粒度から不変性を同時に抽出する能力を強化し、一般化が向上する。
論文 参考訳(メタデータ) (2024-06-02T14:43:56Z) - Improving out-of-distribution generalization in graphs via hierarchical semantic environments [5.481047026874547]
グラフ毎に階層的な環境を生成する新しい手法を提案する。
我々は、同じ階層内の環境の多様性を学ぶために、我々のモデルを導く新しい学習目標を導入する。
我々のフレームワークは、それぞれIC50とEC50予測タスクの最高のベースラインに対して、1.29%と2.83%の改善を実現しています。
論文 参考訳(メタデータ) (2024-03-04T07:03:10Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
本稿では,ノードレベルの分散シフトの下で頑健なグラフニューラルネットワーク(GNN)をトレーニングするための,概念的に単純だが原則化されたアプローチを提案する。
本手法は,環境推定器と熟練GNN予測器を協調する因果推論に基づく新たな学習目標を提案する。
本モデルでは,様々な分散シフトによる一般化を効果的に向上し,グラフOOD一般化ベンチマーク上での最先端の精度を最大27.4%向上させることができる。
論文 参考訳(メタデータ) (2024-02-18T07:49:22Z) - Out-of-Distribution Generalized Dynamic Graph Neural Network with
Disentangled Intervention and Invariance Promotion [61.751257172868186]
動的グラフニューラルネットワーク(DyGNN)は、グラフと時間力学を利用して強力な予測能力を実証している。
既存のDyGNNは、動的グラフに自然に存在する分散シフトを処理できない。
論文 参考訳(メタデータ) (2023-11-24T02:42:42Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - LEADS: Learning Dynamical Systems that Generalize Across Environments [12.024388048406587]
我々は、モデル一般化を改善するために、既知の環境間の共通点と相違点を活用する新しいフレームワークであるLEADSを提案する。
環境に依存したデータから抽出した知識を活用でき、既知の環境と新しい環境の両方の一般化を向上できることを示す。
論文 参考訳(メタデータ) (2021-06-08T17:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。