An Improved Neural Network Model Based On CNN Using For Fruit Sugar
Degree Detection
- URL: http://arxiv.org/abs/2311.11120v1
- Date: Sat, 18 Nov 2023 17:07:25 GMT
- Title: An Improved Neural Network Model Based On CNN Using For Fruit Sugar
Degree Detection
- Authors: Boyang Deng, Xin Wen, and Zhan Gao
- Abstract summary: We designed a fruit sugar degree regression model using an Artificial Neural Network based on spectra of fruits within the visible/near-infrared(V/NIR)range.
We also proposed a new neural network structure: low layers consist of a Multilayer Perceptron(MLP), a middle layer is a 2-dimensional correlation matrix layer, and high layers consist of several Convolutional Neural Network(CNN) layers.
- Score: 24.07349410158827
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Intelligence(AI) widely applies in Image Classification and
Recognition, Text Understanding and Natural Language Processing, which makes
great progress. In this paper, we introduced AI into the fruit quality
detection field. We designed a fruit sugar degree regression model using an
Artificial Neural Network based on spectra of fruits within the
visible/near-infrared(V/NIR)range. After analysis of fruit spectra, we
innovatively proposed a new neural network structure: low layers consist of a
Multilayer Perceptron(MLP), a middle layer is a 2-dimensional correlation
matrix layer, and high layers consist of several Convolutional Neural
Network(CNN) layers. In this study, we used fruit sugar value as a detection
target, collecting two fruits called Gan Nan Navel and Tian Shan Pear as
samples, doing experiments respectively, and comparing their results. We used
Analysis of Variance(ANOVA) to evaluate the reliability of the dataset we
collected. Then, we tried multiple strategies to process spectrum data,
evaluating their effects. In this paper, we tried to add Wavelet
Decomposition(WD) to reduce feature dimensions and a Genetic Algorithm(GA) to
find excellent features. Then, we compared Neural Network models with
traditional Partial Least Squares(PLS) based models. We also compared the
neural network structure we designed(MLP-CNN) with other traditional neural
network structures. In this paper, we proposed a new evaluation standard
derived from dataset standard deviation(STD) for evaluating detection
performance, validating the viability of using an artificial neural network
model to do fruit sugar degree nondestructive detection.
Related papers
- Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
Recent advances in depthwise-separable convolutional neural networks (DS-CNNs) have led to novel architectures.
This paper reveals another striking property of DS-CNN architectures: discernible and explainable patterns emerge in their trained depthwise convolutional kernels in all layers.
arXiv Detail & Related papers (2024-01-25T19:05:53Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Deep Learning Architectures for FSCV, a Comparison [0.0]
Suitability is determined by the predictive performance in the "out-of-probe" case, the response to artificially induced electrical noise, and the ability to predict when the model will be errant for a given probe.
The InceptionTime architecture, a deep convolutional neural network, has the best absolute predictive performance of the models tested but was more susceptible to noise.
A naive multilayer perceptron architecture had the second lowest prediction error and was less affected by the artificial noise, suggesting that convolutions may not be as important for this task as one might suspect.
arXiv Detail & Related papers (2022-12-05T00:20:10Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Parameter Convex Neural Networks [13.42851919291587]
We propose the exponential multilayer neural network (EMLP) which is convex with regard to the parameters of the neural network under some conditions.
For late experiments, we use the same architecture to make the exponential graph convolutional network (EGCN) and do the experiment on the graph classificaion dataset.
arXiv Detail & Related papers (2022-06-11T16:44:59Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
This paper proposes a CNN algorithm for the Alamosa Canyon Bridge as a real structure.
Three different CNN models were considered to predict one and two malfunctioned sensors.
The accuracy of the model was increased by adding a convolutional layer.
arXiv Detail & Related papers (2022-04-11T23:24:03Z) - A Local Geometric Interpretation of Feature Extraction in Deep
Feedforward Neural Networks [13.159994710917022]
In this paper, we present a local geometric analysis to interpret how deep feedforward neural networks extract low-dimensional features from high-dimensional data.
Our study shows that, in a local geometric region, the optimal weight in one layer of the neural network and the optimal feature generated by the previous layer comprise a low-rank approximation of a matrix that is determined by the Bayes action of this layer.
arXiv Detail & Related papers (2022-02-09T18:50:00Z) - Persistent Homology Captures the Generalization of Neural Networks
Without A Validation Set [0.0]
We suggest studying the training of neural networks with Algebraic Topology, specifically Persistent Homology.
Using simplicial complex representations of neural networks, we study the PH diagram distance evolution on the neural network learning process.
Results show that the PH diagram distance between consecutive neural network states correlates with the validation accuracy.
arXiv Detail & Related papers (2021-05-31T09:17:31Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.