An Improved CNN-based Neural Network Model for Fruit Sugar Level Detection
- URL: http://arxiv.org/abs/2311.11120v2
- Date: Thu, 07 Nov 2024 02:05:52 GMT
- Title: An Improved CNN-based Neural Network Model for Fruit Sugar Level Detection
- Authors: Boyang Deng, Xin Wen, Zhan Gao,
- Abstract summary: We design a regression model for fruit sugar level estimation using an Artificial Neural Network (ANN) based on the visible/near-infrared (V/NIR) spectra of fruits.
Using fruit sugar levels as the detection target, we collected data from two fruit types, Gan Nan Navel and Tian Shan Pear, and conducted experiments to compare their results.
- Score: 24.07349410158827
- License:
- Abstract: Artificial Intelligence (AI) is widely used in image classification, recognition, text understanding, and natural language processing, leading to significant advancements. In this paper, we introduce AI into the field of fruit quality detection. We designed a regression model for fruit sugar level estimation, utilizing an Artificial Neural Network (ANN) based on the visible/near-infrared (V/NIR) spectra of fruits. After analyzing the fruit spectra, we proposed an innovative neural network structure: the lower layers consist of a Multilayer Perceptron (MLP), a middle layer features a 2-dimensional correlation matrix, and the upper layers contain several Convolutional Neural Network (CNN) layers. Using fruit sugar levels as the detection target, we collected data from two fruit types, Gan Nan Navel and Tian Shan Pear, and conducted separate experiments to compare their results. To assess the reliability of our dataset, we first applied Analysis of Variance (ANOVA). We then explored various strategies for processing spectral data and evaluated their impact. Additionally, we employed Wavelet Decomposition (WD) for dimensionality reduction and a Genetic Algorithm (GA) to identify optimal features. We compared the performance of Neural Network models with traditional Partial Least Squares (PLS) models, and specifically evaluated our proposed MLP-CNN structure against other traditional neural network architectures. Finally, we introduced a novel evaluation metric based on the dataset's standard deviation (STD) to assess detection performance, demonstrating the feasibility of using an artificial neural network model for nondestructive fruit sugar level detection.
Related papers
- Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
Recent advances in depthwise-separable convolutional neural networks (DS-CNNs) have led to novel architectures.
This paper reveals another striking property of DS-CNN architectures: discernible and explainable patterns emerge in their trained depthwise convolutional kernels in all layers.
arXiv Detail & Related papers (2024-01-25T19:05:53Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Deep Learning Architectures for FSCV, a Comparison [0.0]
Suitability is determined by the predictive performance in the "out-of-probe" case, the response to artificially induced electrical noise, and the ability to predict when the model will be errant for a given probe.
The InceptionTime architecture, a deep convolutional neural network, has the best absolute predictive performance of the models tested but was more susceptible to noise.
A naive multilayer perceptron architecture had the second lowest prediction error and was less affected by the artificial noise, suggesting that convolutions may not be as important for this task as one might suspect.
arXiv Detail & Related papers (2022-12-05T00:20:10Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Parameter Convex Neural Networks [13.42851919291587]
We propose the exponential multilayer neural network (EMLP) which is convex with regard to the parameters of the neural network under some conditions.
For late experiments, we use the same architecture to make the exponential graph convolutional network (EGCN) and do the experiment on the graph classificaion dataset.
arXiv Detail & Related papers (2022-06-11T16:44:59Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
This paper proposes a CNN algorithm for the Alamosa Canyon Bridge as a real structure.
Three different CNN models were considered to predict one and two malfunctioned sensors.
The accuracy of the model was increased by adding a convolutional layer.
arXiv Detail & Related papers (2022-04-11T23:24:03Z) - A Local Geometric Interpretation of Feature Extraction in Deep
Feedforward Neural Networks [13.159994710917022]
In this paper, we present a local geometric analysis to interpret how deep feedforward neural networks extract low-dimensional features from high-dimensional data.
Our study shows that, in a local geometric region, the optimal weight in one layer of the neural network and the optimal feature generated by the previous layer comprise a low-rank approximation of a matrix that is determined by the Bayes action of this layer.
arXiv Detail & Related papers (2022-02-09T18:50:00Z) - Persistent Homology Captures the Generalization of Neural Networks
Without A Validation Set [0.0]
We suggest studying the training of neural networks with Algebraic Topology, specifically Persistent Homology.
Using simplicial complex representations of neural networks, we study the PH diagram distance evolution on the neural network learning process.
Results show that the PH diagram distance between consecutive neural network states correlates with the validation accuracy.
arXiv Detail & Related papers (2021-05-31T09:17:31Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.