GaussianDiffusion: 3D Gaussian Splatting for Denoising Diffusion Probabilistic Models with Structured Noise
- URL: http://arxiv.org/abs/2311.11221v3
- Date: Tue, 26 Nov 2024 09:01:14 GMT
- Title: GaussianDiffusion: 3D Gaussian Splatting for Denoising Diffusion Probabilistic Models with Structured Noise
- Authors: Xinhai Li, Huaibin Wang, Kuo-Kun Tseng,
- Abstract summary: This paper introduces a novel text to 3D content generation framework, Gaussian Diffusion, based on Gaussian Splatting.
The challenge of achieving multi-view consistency in 3D generation significantly impedes modeling complexity and accuracy.
We propose the variational Gaussian Splatting technique to enhance the quality and stability of 3D appearance.
- Score: 0.0
- License:
- Abstract: Text-to-3D, known for its efficient generation methods and expansive creative potential, has garnered significant attention in the AIGC domain. However, the pixel-wise rendering of NeRF and its ray marching light sampling constrain the rendering speed, impacting its utility in downstream industrial applications. Gaussian Splatting has recently shown a trend of replacing the traditional pointwise sampling technique commonly used in NeRF-based methodologies, and it is changing various aspects of 3D reconstruction. This paper introduces a novel text to 3D content generation framework, Gaussian Diffusion, based on Gaussian Splatting and produces more realistic renderings. The challenge of achieving multi-view consistency in 3D generation significantly impedes modeling complexity and accuracy. Taking inspiration from SJC, we explore employing multi-view noise distributions to perturb images generated by 3D Gaussian Splatting, aiming to rectify inconsistencies in multi-view geometry. We ingeniously devise an efficient method to generate noise that produces Gaussian noise from diverse viewpoints, all originating from a shared noise source. Furthermore, vanilla 3D Gaussian-based generation tends to trap models in local minima, causing artifacts like floaters, burrs, or proliferative elements. To mitigate these issues, we propose the variational Gaussian Splatting technique to enhance the quality and stability of 3D appearance. To our knowledge, our approach represents the first comprehensive utilization of Gaussian Diffusion across the entire spectrum of 3D content generation processes.
Related papers
- DiffSplat: Repurposing Image Diffusion Models for Scalable Gaussian Splat Generation [33.62074896816882]
DiffSplat is a novel 3D generative framework that generates 3D Gaussian splats by taming large-scale text-to-image diffusion models.
It differs from previous 3D generative models by effectively utilizing web-scale 2D priors while maintaining 3D consistency in a unified model.
In conjunction with the regular diffusion loss on these grids, a 3D rendering loss is introduced to facilitate 3D coherence across arbitrary views.
arXiv Detail & Related papers (2025-01-28T07:38:59Z) - DehazeGS: Seeing Through Fog with 3D Gaussian Splatting [17.119969983512533]
We introduce DehazeGS, a method capable of decomposing and rendering a fog-free background from participating media.
Experiments on both synthetic and real-world foggy datasets demonstrate that DehazeGS achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-01-07T09:47:46Z) - DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
We introduce DSplats, a novel method that directly denoises multiview images using Gaussian-based Reconstructors to produce realistic 3D assets.
Our experiments demonstrate that DSplats not only produces high-quality, spatially consistent outputs, but also sets a new standard in single-image to 3D reconstruction.
arXiv Detail & Related papers (2024-12-11T07:32:17Z) - NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGS is a diffusion model for Gaussian Splatting given sparse-view images.
We leverage the novel view denoising through a transformer-based network to generate 3D Gaussians.
arXiv Detail & Related papers (2024-11-25T07:57:17Z) - L3DG: Latent 3D Gaussian Diffusion [74.36431175937285]
L3DG is the first approach for generative 3D modeling of 3D Gaussians through a latent 3D Gaussian diffusion formulation.
We employ a sparse convolutional architecture to efficiently operate on room-scale scenes.
By leveraging the 3D Gaussian representation, the generated scenes can be rendered from arbitrary viewpoints in real-time.
arXiv Detail & Related papers (2024-10-17T13:19:32Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - A Refined 3D Gaussian Representation for High-Quality Dynamic Scene Reconstruction [2.022451212187598]
In recent years, Neural Radiance Fields (NeRF) has revolutionized three-dimensional (3D) reconstruction with its implicit representation.
3D Gaussian Splatting (3D-GS) has departed from the implicit representation of neural networks and instead directly represents scenes as point clouds with Gaussian-shaped distributions.
This paper purposes a refined 3D Gaussian representation for high-quality dynamic scene reconstruction.
Experimental results demonstrate that our method surpasses existing approaches in rendering quality and speed, while significantly reducing the memory usage associated with 3D-GS.
arXiv Detail & Related papers (2024-05-28T07:12:22Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
We propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously.
Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space.
In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks.
arXiv Detail & Related papers (2023-09-28T17:55:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.