論文の概要: AutoStory: Generating Diverse Storytelling Images with Minimal Human
Effort
- arxiv url: http://arxiv.org/abs/2311.11243v1
- Date: Sun, 19 Nov 2023 06:07:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-21 21:19:17.229655
- Title: AutoStory: Generating Diverse Storytelling Images with Minimal Human
Effort
- Title(参考訳): AutoStory:最小限の人間によるストーリーテリング画像の生成
- Authors: Wen Wang, Canyu Zhao, Hao Chen, Zhekai Chen, Kecheng Zheng, Chunhua
Shen
- Abstract要約: 本稿では,多種多様で高品質で一貫したストーリーイメージを効果的に生成できる自動ストーリー可視化システムを提案する。
本研究では,大規模言語モデルの理解と計画能力をレイアウト計画に利用し,大規模テキスト・画像モデルを用いて高度なストーリー画像を生成する。
- 参考スコア(独自算出の注目度): 55.83007338095763
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Story visualization aims to generate a series of images that match the story
described in texts, and it requires the generated images to satisfy high
quality, alignment with the text description, and consistency in character
identities. Given the complexity of story visualization, existing methods
drastically simplify the problem by considering only a few specific characters
and scenarios, or requiring the users to provide per-image control conditions
such as sketches. However, these simplifications render these methods
incompetent for real applications. To this end, we propose an automated story
visualization system that can effectively generate diverse, high-quality, and
consistent sets of story images, with minimal human interactions. Specifically,
we utilize the comprehension and planning capabilities of large language models
for layout planning, and then leverage large-scale text-to-image models to
generate sophisticated story images based on the layout. We empirically find
that sparse control conditions, such as bounding boxes, are suitable for layout
planning, while dense control conditions, e.g., sketches and keypoints, are
suitable for generating high-quality image content. To obtain the best of both
worlds, we devise a dense condition generation module to transform simple
bounding box layouts into sketch or keypoint control conditions for final image
generation, which not only improves the image quality but also allows easy and
intuitive user interactions. In addition, we propose a simple yet effective
method to generate multi-view consistent character images, eliminating the
reliance on human labor to collect or draw character images.
- Abstract(参考訳): ストーリービジュアライゼーションは、テキストで記述されたストーリーにマッチする一連の画像を生成することを目的としており、生成した画像は高品質、テキスト記述との整合性、文字のアイデンティティの整合性を満たす必要がある。
ストーリービジュアライゼーションの複雑さを考えると、既存のメソッドは、いくつかの特定の文字やシナリオだけを考慮するか、スケッチのようなイメージごとの制御条件をユーザに要求することで、問題を劇的に単純化する。
しかし、これらの単純化により、実際のアプリケーションではこれらの手法は無能である。
そこで本研究では,人間のインタラクションを最小限に抑えて,多種多様で高品質で一貫したストーリーイメージを効果的に生成できる自動ストーリー可視化システムを提案する。
具体的には,大規模言語モデルの理解と計画機能をレイアウト計画に活用し,大規模テキストから画像へのモデルを用いて,レイアウトに基づく高度なストーリーイメージを生成する。
境界ボックスなどのスパース制御条件はレイアウト計画に適しているが,スケッチやキーポイントなどの密集制御条件は高品質な画像コンテンツを生成するのに適している。
画像の画質を向上させるだけでなく,ユーザインタラクションも簡単かつ直感的に行えるよう,画像生成のための簡単なバウンディングボックスレイアウトをスケッチやキーポイント制御条件に変換する。
また,文字画像の収集や描画に要する労力をなくし,多視点に一貫性のある文字画像を生成するための簡易かつ効果的な手法を提案する。
関連論文リスト
- Training-Free Consistent Text-to-Image Generation [80.4814768762066]
テキスト・ツー・イメージ・モデルは様々なプロンプトで同じ主題を表現できる。
既存のアプローチは、特定のユーザが提供する主題を記述する新しい単語を教えるためにモデルを微調整する。
本研究では、事前学習モデルの内部アクティベーションを共有することによって、一貫した主題生成を可能にする、トレーニング不要なアプローチであるConsiStoryを提案する。
論文 参考訳(メタデータ) (2024-02-05T18:42:34Z) - LoCo: Locally Constrained Training-Free Layout-to-Image Synthesis [24.925757148750684]
テキストプロンプトとレイアウト命令の両方に整合した高品質な画像を生成するのに優れたレイアウト・ツー・イメージ合成のためのトレーニング不要なアプローチを提案する。
LoCoは既存のテキスト・ツー・イメージモデルとレイアウト・ツー・イメージモデルにシームレスに統合され、空間制御の性能を高め、以前の方法で観察された意味障害に対処する。
論文 参考訳(メタデータ) (2023-11-21T04:28:12Z) - LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image
Generation [121.45667242282721]
レイアウト計画と画像生成を実現するための粗大なパラダイムを提案する。
提案手法は,フォトリアリスティックなレイアウトと画像生成の観点から,最先端のモデルよりも優れている。
論文 参考訳(メタデータ) (2023-08-09T17:45:04Z) - Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion
Models [70.86603627188519]
我々は,オープンエンドなビジュアルストーリーテリングとして表現された,与えられたストーリーラインに基づいてコヒーレントな画像列を生成するという,斬新で挑戦的な課題に焦点をあてる。
本稿では,新しい視覚言語コンテキストモジュールを用いた学習に基づく自動回帰画像生成モデル(StoryGen)を提案する。
StoryGenは最適化なしに文字を一般化することができ、一貫性のあるコンテンツと一貫した文字で画像列を生成する。
論文 参考訳(メタデータ) (2023-06-01T17:58:50Z) - GlyphDraw: Seamlessly Rendering Text with Intricate Spatial Structures
in Text-to-Image Generation [18.396131717250793]
GlyphDrawは、画像生成モデルに特定の言語に対して、テキストにコヒーレントに埋め込まれた画像を生成する能力を持たせることを目的とした、一般的な学習フレームワークである。
提案手法は,プロンプトのように正確な言語文字を生成するだけでなく,生成したテキストを背景にシームレスにブレンドする。
論文 参考訳(メタデータ) (2023-03-31T08:06:33Z) - Unified Multi-Modal Latent Diffusion for Joint Subject and Text
Conditional Image Generation [63.061871048769596]
本稿では, 特定対象を含む画像と共同テキストを入力シーケンスとして用いた, Unified Multi-Modal Latent Diffusion (UMM-Diffusion) を提案する。
より具体的には、入力テキストと画像の両方を1つの統一マルチモーダル潜在空間に符号化する。
入力テキストと画像の両面から複雑な意味を持つ高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2023-03-16T13:50:20Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
本稿では,画像間翻訳の領域にテキスト・ツー・イメージ合成を取り入れた新しいフレームワークを提案する。
本手法は,事前学習したテキスト・画像拡散モデルのパワーを利用して,対象のテキストに適合する新たな画像を生成する。
論文 参考訳(メタデータ) (2022-11-22T20:39:18Z) - TediGAN: Text-Guided Diverse Face Image Generation and Manipulation [52.83401421019309]
TediGANはマルチモーダル画像生成とテキスト記述による操作のためのフレームワークである。
StyleGANインバージョンモジュールは、よく訓練されたStyleGANの潜在空間に実際の画像をマッピングする。
視覚言語的類似性は、画像とテキストを共通の埋め込み空間にマッピングすることで、テキスト画像マッチングを学ぶ。
インスタンスレベルの最適化は、操作におけるID保存のためのものだ。
論文 参考訳(メタデータ) (2020-12-06T16:20:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。