Circuit complexity of quantum access models for encoding classical data
- URL: http://arxiv.org/abs/2311.11365v2
- Date: Mon, 29 Apr 2024 03:20:46 GMT
- Title: Circuit complexity of quantum access models for encoding classical data
- Authors: Xiao-Ming Zhang, Xiao Yuan,
- Abstract summary: We study the Clifford$+T$ complexity of constructing some typical quantum access models.
We show that both sparse-access input models and block-encoding require nearly linear circuit complexities.
Our protocols are built upon improved quantum state preparation and a selective oracle for Pauli strings.
- Score: 4.727325187683489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical data encoding is usually treated as a black-box in the oracle-based quantum algorithms. On the other hand, their constructions are crucial for practical algorithm implementations. Here, we open the black-boxes of data encoding and study the Clifford$+T$ complexity of constructing some typical quantum access models. For general matrices, we show that both sparse-access input models and block-encoding require nearly linear circuit complexities relative to the matrix dimension, even if matrices are sparse. We also gives construction protocols achieving near-optimal gate complexities. On the other hand, the construction becomes efficient with respect to the data qubit when the matrix is the linear combination polynomial terms of efficient unitaries. As a typical example, we propose improved block encoding when these unitaries are Pauli strings. Our protocols are built upon improved quantum state preparation and a selective oracle for Pauli strings, which hold independent value. Our access model constructions offer considerable flexibility, allowing for tunable ancillary qubit number and offers corresponding space-time trade-offs.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Block encoding of sparse structured matrices coming from ocean acoustics in quantum computing [2.4487770108795393]
Block encoding is a data input model commonly used in a quantum computer.
New base scheme of block encoding is given which generalizes the one in citecamps2024 by removing the constraint that every data item should appear in all columns.
arXiv Detail & Related papers (2024-05-28T09:49:58Z) - Variational quantum regression algorithm with encoded data structure [0.21756081703276003]
We construct a quantum regression algorithm wherein the quantum state directly encodes the classical data table.
We show for the first time explicitly how the linkage of the classical data structure can be taken advantage of directly through quantum subroutines.
arXiv Detail & Related papers (2023-07-07T00:30:16Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra [3.4137115855910767]
We propose a class of randomized quantum algorithms for the task of sampling from matrix functions.
Our use of qubits is purely algorithmic, and no additional qubits are required for quantum data structures.
arXiv Detail & Related papers (2023-02-03T17:22:49Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - FABLE: Fast Approximate Quantum Circuits for Block-Encodings [0.0]
We propose FABLE, a method to generate approximate quantum circuits for block-encodings of matrices in a fast manner.
FABLE circuits have a simple structure and are directly formulated in terms of one- and two-qubit gates.
We show that FABLE circuits can be compressed and sparsified.
arXiv Detail & Related papers (2022-04-29T21:06:07Z) - Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices [4.2389474761558406]
We show how efficient quantum circuits can be explicitly constructed for some well-structured matrices.
We also provide implementations of these quantum circuits in sparse strategies.
arXiv Detail & Related papers (2022-03-19T03:50:16Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
Coherent control of quantum computations can be used to improve some quantum protocols and algorithms.
We refine the PBS-calculus, a graphical language for coherent control inspired by quantum optics.
arXiv Detail & Related papers (2022-02-10T18:59:52Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.