Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices
- URL: http://arxiv.org/abs/2203.10236v4
- Date: Mon, 22 May 2023 05:00:08 GMT
- Title: Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices
- Authors: Daan Camps, Lin Lin, Roel Van Beeumen and Chao Yang
- Abstract summary: We show how efficient quantum circuits can be explicitly constructed for some well-structured matrices.
We also provide implementations of these quantum circuits in sparse strategies.
- Score: 4.2389474761558406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many standard linear algebra problems can be solved on a quantum computer by
using recently developed quantum linear algebra algorithms that make use of
block encodings and quantum eigenvalue/singular value transformations. A block
encoding embeds a properly scaled matrix of interest A in a larger unitary
transformation U that can be decomposed into a product of simpler unitaries and
implemented efficiently on a quantum computer. Although quantum algorithms can
potentially achieve exponential speedup in solving linear algebra problems
compared to the best classical algorithm, such gain in efficiency ultimately
hinges on our ability to construct an efficient quantum circuit for the block
encoding of A, which is difficult in general, and not trivial even for
well-structured sparse matrices. In this paper, we give a few examples on how
efficient quantum circuits can be explicitly constructed for some
well-structured sparse matrices, and discuss a few strategies used in these
constructions. We also provide implementations of these quantum circuits in
MATLAB.
Related papers
- Double-Logarithmic Depth Block-Encodings of Simple Finite Difference Method's Matrices [0.0]
Solving differential equations is one of the most computationally expensive problems in classical computing.
Despite recent progress made in the field of quantum computing and quantum algorithms, its end-to-end application towards practical realization still remains unattainable.
arXiv Detail & Related papers (2024-10-07T17:44:30Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Circuit complexity of quantum access models for encoding classical data [4.727325187683489]
We study the Clifford$+T$ complexity of constructing some typical quantum access models.
We show that both sparse-access input models and block-encoding require nearly linear circuit complexities.
Our protocols are built upon improved quantum state preparation and a selective oracle for Pauli strings.
arXiv Detail & Related papers (2023-11-19T16:23:57Z) - Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra [3.4137115855910767]
We propose a class of randomized quantum algorithms for the task of sampling from matrix functions.
Our use of qubits is purely algorithmic, and no additional qubits are required for quantum data structures.
arXiv Detail & Related papers (2023-02-03T17:22:49Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - FABLE: Fast Approximate Quantum Circuits for Block-Encodings [0.0]
We propose FABLE, a method to generate approximate quantum circuits for block-encodings of matrices in a fast manner.
FABLE circuits have a simple structure and are directly formulated in terms of one- and two-qubit gates.
We show that FABLE circuits can be compressed and sparsified.
arXiv Detail & Related papers (2022-04-29T21:06:07Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.