Large Pre-trained time series models for cross-domain Time series analysis tasks
- URL: http://arxiv.org/abs/2311.11413v2
- Date: Thu, 11 Jul 2024 16:32:12 GMT
- Title: Large Pre-trained time series models for cross-domain Time series analysis tasks
- Authors: Harshavardhan Kamarthi, B. Aditya Prakash,
- Abstract summary: We propose a novel method of textitadaptive segmentation that automatically identifies optimal dataset-specific segmentation strategy during pre-training.
This enables LPTM to perform similar to or better than domain-specific state-of-art model when fine-tuned to different downstream time-series analysis tasks and under zero-shot settings.
- Score: 20.228846068418765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large pre-trained models have been vital in recent advancements in domains like language and vision, making model training for individual downstream tasks more efficient and provide superior performance. However, tackling time-series analysis tasks usually involves designing and training a separate model from scratch leveraging training data and domain expertise specific to the task. We tackle a significant challenge for pre-training a foundational time-series model from multi-domain time-series datasets: extracting semantically useful tokenized inputs to the model across heterogenous time-series from different domains. We propose Large Pre-trained Time-series Models (LPTM) that introduces a novel method of \textit{adaptive segmentation} that automatically identifies optimal dataset-specific segmentation strategy during pre-training. This enables LPTM to perform similar to or better than domain-specific state-of-art model when fine-tuned to different downstream time-series analysis tasks and under zero-shot settings. LPTM achieves superior forecasting and time-series classification results taking up to 40% less data and 50% less training time compared to state-of-art baselines.
Related papers
- Building a Multivariate Time Series Benchmarking Datasets Inspired by Natural Language Processing (NLP) [36.01963149343915]
We propose a new approach to create a comprehensive benchmark dataset for time series analysis.
We discuss the process of curating diverse, representative, and challenging time series datasets.
arXiv Detail & Related papers (2024-10-14T16:25:54Z) - UniCL: A Universal Contrastive Learning Framework for Large Time Series Models [18.005358506435847]
Time-series analysis plays a pivotal role across a range of critical applications, from finance to healthcare.
Traditional supervised learning methods first annotate extensive labels for time-series data in each task.
This paper introduces UniCL, a universal and scalable contrastive learning framework designed for pretraining time-series foundation models.
arXiv Detail & Related papers (2024-05-17T07:47:11Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - Generative Pretrained Hierarchical Transformer for Time Series Forecasting [3.739587363053192]
We propose a novel generative pretrained hierarchical transformer architecture for forecasting, named textbfGPHT.
We conduct sufficient experiments on eight datasets with mainstream self-supervised pretraining models and supervised models.
The results demonstrated that GPHT surpasses the baseline models across various fine-tuning and zero/few-shot learning settings in the traditional long-term forecasting task.
arXiv Detail & Related papers (2024-02-26T11:54:54Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
We propose a novel framework, TEMPO, that can effectively learn time series representations.
TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains.
arXiv Detail & Related papers (2023-10-08T00:02:25Z) - Toward a Foundation Model for Time Series Data [34.1973242428317]
A foundation model is a machine learning model trained on a large and diverse set of data.
We develop an effective time series foundation model by leveraging unlabeled samples from multiple domains.
arXiv Detail & Related papers (2023-10-05T21:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.