UniCL: A Universal Contrastive Learning Framework for Large Time Series Models
- URL: http://arxiv.org/abs/2405.10597v1
- Date: Fri, 17 May 2024 07:47:11 GMT
- Title: UniCL: A Universal Contrastive Learning Framework for Large Time Series Models
- Authors: Jiawei Li, Jingshu Peng, Haoyang Li, Lei Chen,
- Abstract summary: Time-series analysis plays a pivotal role across a range of critical applications, from finance to healthcare.
Traditional supervised learning methods first annotate extensive labels for time-series data in each task.
This paper introduces UniCL, a universal and scalable contrastive learning framework designed for pretraining time-series foundation models.
- Score: 18.005358506435847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-series analysis plays a pivotal role across a range of critical applications, from finance to healthcare, which involves various tasks, such as forecasting and classification. To handle the inherent complexities of time-series data, such as high dimensionality and noise, traditional supervised learning methods first annotate extensive labels for time-series data in each task, which is very costly and impractical in real-world applications. In contrast, pre-trained foundation models offer a promising alternative by leveraging unlabeled data to capture general time series patterns, which can then be fine-tuned for specific tasks. However, existing approaches to pre-training such models typically suffer from high-bias and low-generality issues due to the use of predefined and rigid augmentation operations and domain-specific data training. To overcome these limitations, this paper introduces UniCL, a universal and scalable contrastive learning framework designed for pretraining time-series foundation models across cross-domain datasets. Specifically, we propose a unified and trainable time-series augmentation operation to generate pattern-preserved, diverse, and low-bias time-series data by leveraging spectral information. Besides, we introduce a scalable augmentation algorithm capable of handling datasets with varying lengths, facilitating cross-domain pretraining. Extensive experiments on two benchmark datasets across eleven domains validate the effectiveness of UniCL, demonstrating its high generalization on time-series analysis across various fields.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
Training Large Time Series Models (LTSMs) on heterogeneous time series data poses unique challenges.
We propose emphtime series prompt, a novel statistical prompting strategy tailored to time series data.
We introduce textttLTSM-bundle, which bundles the best design choices we have identified.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - NuwaTS: a Foundation Model Mending Every Incomplete Time Series [24.768755438620666]
We present textbfNuwaTS, a novel framework that repurposes Pre-trained Language Models for general time series imputation.
NuwaTS can be applied to impute missing data across any domain.
We show that NuwaTS generalizes to other time series tasks, such as forecasting.
arXiv Detail & Related papers (2024-05-24T07:59:02Z) - ROSE: Register Assisted General Time Series Forecasting with Decomposed Frequency Learning [17.734609093955374]
We propose a Register Assisted General Time Series Forecasting Model with Decomposed Frequency Learning (ROSE)
ROSE employs Decomposed Frequency Learning for the pre-training task, which decomposes coupled semantic and periodic information in time series with frequency-based masking and reconstruction to obtain unified representations across domains.
After pre-training on large-scale time series data, ROSE achieves state-of-the-art forecasting performance on 8 real-world benchmarks.
arXiv Detail & Related papers (2024-05-24T06:01:09Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Large Pre-trained time series models for cross-domain Time series analysis tasks [20.228846068418765]
We propose a novel method of textitadaptive segmentation that automatically identifies optimal dataset-specific segmentation strategy during pre-training.
This enables LPTM to perform similar to or better than domain-specific state-of-art model when fine-tuned to different downstream time-series analysis tasks and under zero-shot settings.
arXiv Detail & Related papers (2023-11-19T20:16:16Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
This research advocates for a unified model paradigm that transcends domain boundaries.
Learning an effective cross-domain model presents the following challenges.
We propose UniTime for effective cross-domain time series learning.
arXiv Detail & Related papers (2023-10-15T06:30:22Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Few-Shot Forecasting of Time-Series with Heterogeneous Channels [4.635820333232681]
We develop a model composed of permutation-invariant deep set-blocks which incorporate a temporal embedding.
We show through experiments that our model provides a good generalization, outperforming baselines carried over from simpler scenarios.
arXiv Detail & Related papers (2022-04-07T14:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.