論文の概要: MultiLoRA: Democratizing LoRA for Better Multi-Task Learning
- arxiv url: http://arxiv.org/abs/2311.11501v1
- Date: Mon, 20 Nov 2023 02:59:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-21 20:07:13.407710
- Title: MultiLoRA: Democratizing LoRA for Better Multi-Task Learning
- Title(参考訳): MultiLoRA: マルチタスク学習を改善するためにLoRAを民主化する
- Authors: Yiming Wang, Yu Lin, Xiaodong Zeng and Guannan Zhang
- Abstract要約: LoRAは、特定のタスクにLLMを適用する際に、顕著なリソース効率と同等のパフォーマンスを達成する。
LoRAは少数のトップ特異ベクトルに支配され、微調整はより重要でないユニタリ変換の集合に分解される。
我々は,LoRAで観測されるトップ特異ベクトルの優位性を低減し,マルチタスク適応性を向上するMultiLoRAを提案する。
- 参考スコア(独自算出の注目度): 20.750808913757396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LoRA achieves remarkable resource efficiency and comparable performance when
adapting LLMs for specific tasks. Since ChatGPT demonstrated superior
performance on various tasks, there has been a growing desire to adapt one
model for all tasks. However, the explicit low-rank of LoRA limits the
adaptation performance in complex multi-task scenarios. LoRA is dominated by a
small number of top singular vectors while fine-tuning decomposes into a set of
less important unitary transforms. In this paper, we propose MultiLoRA for
better multi-task adaptation by reducing the dominance of top singular vectors
observed in LoRA. MultiLoRA scales LoRA modules horizontally and change
parameter initialization of adaptation matrices to reduce parameter dependency,
thus yields more balanced unitary subspaces. We unprecedentedly construct
specialized training data by mixing datasets of instruction follow, natural
language understanding, world knowledge, to cover semantically and
syntactically different samples. With only 2.5% of additional parameters,
MultiLoRA outperforms single LoRA counterparts and fine-tuning on multiple
benchmarks and model scales. Further investigation into weight update matrices
of MultiLoRA exhibits reduced dependency on top singular vectors and more
democratic unitary transform contributions.
- Abstract(参考訳): LoRAは、特定のタスクにLLMを適用する際に、顕著なリソース効率と同等のパフォーマンスを達成する。
ChatGPTは様々なタスクにおいて優れたパフォーマンスを示しており、すべてのタスクにひとつのモデルを適応したいという願望が高まっている。
しかし、LoRAの明示的な低ランクは、複雑なマルチタスクシナリオにおける適応性能を制限する。
LoRAは少数のトップ特異ベクトルに支配され、微調整は重要でないユニタリ変換の集合に分解される。
本稿では,LoRAで観測されるトップ特異ベクトルの優位性を低減し,マルチタスク適応性を向上するMultiLoRAを提案する。
MultiLoRAはLoRAモジュールを水平にスケールし、パラメータ依存性を減らすために適応行列のパラメータ初期化を変更する。
前例のないように,命令追従,自然言語理解,世界知識のデータセットを混合して,意味的および構文的に異なるサンプルをカバーするように,特別なトレーニングデータを構築した。
追加パラメータのわずか2.5%で、MultiLoRAは単一のLoRAよりも優れ、複数のベンチマークやモデルスケールで微調整を行う。
MultiLoRAの重み更新行列に関するさらなる研究は、上位特異ベクトルへの依存の低減とより民主的なユニタリ変換の寄与を示す。
関連論文リスト
- MALoRA: Mixture of Asymmetric Low-Rank Adaptation for Enhanced Multi-Task Learning [29.957620178740186]
マルチタスクのシナリオでは、トレーニングの不均衡やシーソー効果といった課題が頻繁に現れます。
フレキシブルな微調整フレームワークとして非対称低ランク適応(MALoRA)の混合を提案する。
MALoRAはトレーニング可能なパラメータの数を30%から48%削減し、トレーニング速度を1.2倍にし、シングルタスクのLoRAモデルの計算効率に匹敵する。
論文 参考訳(メタデータ) (2024-10-30T07:53:52Z) - LoRA vs Full Fine-tuning: An Illusion of Equivalence [76.11938177294178]
本研究では, 異なる微調整法が, スペクトル特性のレンズを用いてモデルの重み行列を解析することにより, 事前学習モデルを変化させる方法について検討した。
単一値分解が全く異なる構造を持つ全微調整およびLoRA収量行列が得られた。
イントルーダ次元がLoRAの微調整モデルになぜ現れるのか、なぜそれらが望ましくないのか、そしてどのようにしてその効果を最小化できるかを検討することで結論を下す。
論文 参考訳(メタデータ) (2024-10-28T17:14:01Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
マルチタスク学習能力を大幅に向上させながら、低ランク適応の利点を保ちながら、MTL-LoRAを提案する。
MTL-LoRAは、タスク固有の情報を識別するタスク適応パラメータを追加することでLoRAを強化する。
このアプローチにより、汎用コーパス上で事前訓練された大規模言語モデル(LLM)が、限られた数のトレーニング可能なパラメータで異なるターゲットタスクドメインに適応できる。
論文 参考訳(メタデータ) (2024-10-12T08:32:26Z) - DLP-LoRA: Efficient Task-Specific LoRA Fusion with a Dynamic, Lightweight Plugin for Large Language Models [10.179598253424103]
大規模言語モデル(LLM)は様々なタスクで堅牢なパフォーマンスを実現していますが、これらのモデルを特定のドメイン向けに微調整することはリソース集約的です。
5Mパラメータしか持たないミニMLPモジュールを提案し、トップpサンプリング戦略を用いて文レベルで複数のLoRAを動的に融合する。
このアプローチは、並列計算を利用することで、単一のLoRA推論の2倍未満まで推論時間を短縮する。
論文 参考訳(メタデータ) (2024-10-02T12:45:52Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [54.65520214291653]
本稿では,Low-Rank Adaption (LoRA) とマルチモーダル命令チューニングを統合した新しい手法を提案する。
各入力インスタンスのユニークな要求に合わせた低ランク適応行列を動的に構築することで、LoRAを革新する。
様々なマルチモーダル評価データセットの実験結果から、MixLoRAは従来のLoRAを同等以上のランクで上回るだけでなく、性能も向上していることが示された。
論文 参考訳(メタデータ) (2024-02-24T20:15:31Z) - LoRA-Flow: Dynamic LoRA Fusion for Large Language Models in Generative
Tasks [72.88244322513039]
LoRAは、ダウンストリームタスクやドメイン毎に大きな言語モデル(LLM)をカスタマイズするために軽量モジュールを使用している。
動的重みを利用して異なるLoRAの影響を調整するLoRA-Flowを提案する。
6つの生成タスクに対する実験により、我々の手法はタスクレベルの融合重みでベースラインを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2024-02-18T04:41:25Z) - LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed
Tasks in the Wild [76.67343971195267]
Low-Rank Adaptation (LoRA)は、大規模言語モデル(LLM)を微調整するための効率的なソリューションを提供する。
LoraRetrieverは、入力プロンプトに従って複数のLoRAを適応的に検索して構成する検索テーマ構成フレームワークである。
実験結果から、LoraRetrieverは一貫してベースラインを上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-02-15T15:02:46Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。