An Efficient Quantum Circuit Construction Method for Mutually Unbiased Bases in $n$-Qubit Systems
- URL: http://arxiv.org/abs/2311.11698v2
- Date: Fri, 19 Jul 2024 17:12:55 GMT
- Title: An Efficient Quantum Circuit Construction Method for Mutually Unbiased Bases in $n$-Qubit Systems
- Authors: Wang Yu, Wu Dongsheng,
- Abstract summary: Mutually unbiased bases (MUBs) play a crucial role in numerous applications within quantum information science.
We present an efficient algorithm to generate each of the (2n + 1) quantum MUB circuits on (n)-qubit systems within (O(n3)) time.
- Score: 0.3348366298944194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mutually unbiased bases (MUBs) play a crucial role in numerous applications within quantum information science, such as quantum state tomography, error correction, entanglement detection, and quantum cryptography. Utilizing \(2^n + 1\) MUB circuits provides a minimal and optimal measurement strategy for reconstructing all \(n\)-qubit unknown states. It significantly reduces the number of measurements compared to the traditional \(4^n\) Pauli observables, also enhancing the robustness of quantum key distribution (QKD) protocols. Previous circuit designs that rely on a single generator can result in exponential gate costs for some MUB circuits. In this work, we present an efficient algorithm to generate each of the \(2^n + 1\) quantum MUB circuits on \(n\)-qubit systems within \(O(n^3)\) time. The algorithm features a three-stage structure, and we have calculated the average number of different gates for random sampling. Additionally, we have identified two linear properties: the entanglement part can be directly defined into \(2n - 3\) fixed sub-parts, and the knowledge of \(n\) special MUB circuits is sufficient to construct all \(2^n + 1\) MUB circuits. This new efficient and simple circuit construction paves the way for the implementation of a complete set of MUBs in diverse quantum information processing tasks on high-dimensional quantum systems.
Related papers
- Quantum circuit for multi-qubit Toffoli gate with optimal resource [6.727984016678534]
We design new quantum circuits for the $n$-Toffoli gate and general multi-controlled unitary, which have only $O(log n)$-depth and $O(n)$-size.
We demonstrate that without the assistance of ancillary qubit, any quantum circuit implementation of multi-qubit Toffoli gate must employ exponential precision gates.
arXiv Detail & Related papers (2024-02-07T17:53:21Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
We introduce AQCtensor, a novel algorithm to produce short-depth quantum circuits from Matrix Product States (MPS)
Our approach is specifically tailored to the preparation of quantum states generated from the time evolution of quantum many-body Hamiltonians.
For simulation problems on 100 qubits, we show that AQCtensor achieves at least an order of magnitude reduction in the depth of the resulting optimized circuit.
arXiv Detail & Related papers (2023-01-20T14:40:29Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Automatic quantum circuit encoding of a given arbitrary quantum state [0.0]
We propose a quantum-classical hybrid algorithm to encode a given arbitrarily quantum state onto an optimal quantum circuit.
The proposed algorithm employs as an objective function the absolute value of fidelity $F = langle 0 vert hatmathcalCdagger vert Psi rangle$.
We experimentally demonstrate that a quantum circuit generated by the AQCE algorithm can indeed represent the original quantum state reasonably on a noisy real quantum device.
arXiv Detail & Related papers (2021-12-29T12:33:41Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum Search for Scaled Hash Function Preimages [1.3299507495084417]
We present the implementation of Grover's algorithm in a quantum simulator to perform a quantum search for preimages of two scaled hash functions.
We show that strategies that suggest a shortcut based on sampling the quantum register after a few steps of Grover's algorithm can only provide some marginal practical advantage in terms of error mitigation.
arXiv Detail & Related papers (2020-09-01T18:00:02Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.