Efficient compilation of quantum circuits using multi-qubit gates
- URL: http://arxiv.org/abs/2501.17246v1
- Date: Tue, 28 Jan 2025 19:08:13 GMT
- Title: Efficient compilation of quantum circuits using multi-qubit gates
- Authors: Jonathan Nemirovsky, Maya Chuchem, Yotam Shapira,
- Abstract summary: We present a compilation scheme which implements a general-circuit decomposition to a sequence of Ising-type, long-range, multi-qubit entangling gates.
We numerically test our compilation and show that, compared to conventional realizations with two-qubit gates, our compilations improves the logarithm of quantum volume by $20%$ to $25%$.
- Score: 0.0
- License:
- Abstract: As quantum processors grow in scale and reliability, the need for efficient quantum gate decomposition of circuits to a set of specific available gates, becomes ever more critical. The decomposition of a particular algorithm into a sequence of these available gates is not unique. Thus, the fidelity of an algorithm's implementation can be increased by choosing an optimized decomposition. This is true both for noisy intermediate-scale quantum platforms as well as for implementation of quantum error correction schemes. Here we present a compilation scheme which implements a general-circuit decomposition to a sequence of Ising-type, long-range, multi-qubit entangling gates, that are separated by layers of single qubit rotations. We use trapped ions as an example in which multi-qubit gates naturally arise, yet any system that has connectivity beyond nearest-neighbors may gain from our approach. We evaluate our methods using the quantum volume test over $N$ qubits. In this context, our method replaces $3N^2/2$ two-qubit gates with $2N+1$ multi-qubit gates. Furthermore, our method minimizes the magnitude of the entanglement phases, which typically enables an improved implementation fidelity, by using weaker driving fields or faster realizations. We numerically test our compilation and show that, compared to conventional realizations with sequential two-qubit gates, our compilations improves the logarithm of quantum volume by $20\%$ to $25\%$.
Related papers
- Optimization Driven Quantum Circuit Reduction [20.697821016522358]
We propose three different transpilation approaches to substantially reduce circuit lengths without affecting functionality.
The first variant is based on a search scheme, and the other variants are driven by a database retrieval scheme and a machine learning based decision support.
We show that our proposed methods generate short quantum circuits for restricted gate sets, superior to the typical results obtained by using different qiskit optimization levels.
arXiv Detail & Related papers (2025-02-20T16:41:10Z) - Multi-qubit Lattice Surgery Scheduling [3.7126786554865774]
A quantum circuit can be transpiled into a sequence of solely non-Clifford multi-qubit gates.
We show that the transpilation significantly reduces the circuit length on the set of circuits tested.
The resulting circuit of multi-qubit gates has a further reduction in the expected circuit execution time compared to serial execution.
arXiv Detail & Related papers (2024-05-27T22:41:41Z) - A multiple-circuit approach to quantum resource reduction with application to the quantum lattice Boltzmann method [39.671915199737846]
We introduce a multiple-circuit algorithm for a quantum lattice Boltzmann method (QLBM) solve of the incompressible Navier--Stokes equations.
The presented method is validated and demonstrated for 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Quantum circuit synthesis via a random combinatorial search [0.0]
We use a random search technique to find quantum gate sequences that implement perfect quantum state preparation or unitary operator synthesis with arbitrary targets.
We show that the fraction of perfect-fidelity quantum circuits increases rapidly as soon as the circuit size exceeds the minimum circuit size required for achieving unit fidelity.
arXiv Detail & Related papers (2023-11-29T00:59:29Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Efficient decomposition of unitary matrices in quantum circuit compilers [0.0]
Unitary decomposition is a widely used method to map quantum algorithms to an arbitrary set of quantum gates.
We show that our implementation generates circuits with half the number of CNOT gates and a third of the total circuit length.
In addition to that, it is also up to 10 times as fast.
arXiv Detail & Related papers (2021-01-08T12:54:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.