Quantum approximated cloning-assisted density matrix exponentiation
- URL: http://arxiv.org/abs/2311.11751v2
- Date: Thu, 27 Mar 2025 08:12:31 GMT
- Title: Quantum approximated cloning-assisted density matrix exponentiation
- Authors: Pablo Rodriguez-Grasa, Ruben Ibarrondo, Javier Gonzalez-Conde, Yue Ban, Patrick Rebentrost, Mikel Sanz,
- Abstract summary: Hamiltonian simulation techniques enable the loading of matrices into quantum computers.<n>The Lloyd-Mohseni-Rebentrost protocol efficiently implements matrix exponentiation when multiple copies of a quantum state are available.<n>We propose a method to circumvent this limitation by introducing imperfect quantum copies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical information loading is an essential task for many processing quantum algorithms, constituting a cornerstone in the field of quantum machine learning. In particular, the embedding techniques based on Hamiltonian simulation techniques enable the loading of matrices into quantum computers. A representative example of these methods is the Lloyd-Mohseni-Rebentrost protocol, which efficiently implements matrix exponentiation when multiple copies of a quantum state are available. However, this is a quite ideal set up, and in a realistic scenario, the copies are limited and the non-cloning theorem prevents from producing more exact copies in order to increase the accuracy of the protocol. Here, we propose a method to circumvent this limitation by introducing imperfect quantum copies, which significantly improve the performance of the LMR when the eigenvectors are known.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum Approximate Optimization Method For Finding Hadamard Matrices [0.0]
We propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer.
We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
arXiv Detail & Related papers (2024-08-15T06:25:50Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Photon-phonon quantum cloning in optomechanical system [5.317893030884531]
cloning of flying bits for further processing from the solid-state quantum bits in storage is an operation frequently used in quantum information processing.
We propose a high-fidelity and controllable quantum cloning scheme between solid bits and flying bits.
arXiv Detail & Related papers (2023-02-11T10:09:53Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Matrix-Completion Quantum State Tomography [8.927163098772589]
We introduce a matrix filling-based method for tomography of pure quantum states, called the matrix-completion quantum state tomography.
This method requires only 2n + 1 local Pauli operators and minimal post-processing for n-qubit states.
Numerical results show that our method is highly efficient on superconducting real quantum devices and achieves better fidelity estimates of multiqubit quantum states as compared to contemporary pure state tomography methods.
arXiv Detail & Related papers (2021-11-22T09:35:25Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Variational Quantum Cloning: Improving Practicality for Quantum
Cryptanalysis [2.064612766965483]
We propose variational quantum cloning (VQC), a machine learning based cryptanalysis algorithm.
VQC allows an adversary to obtain optimal (approximate) cloning strategies with short depth quantum circuits.
We derive attacks on two protocols as examples, based on quantum cloning and facilitated by VQC.
arXiv Detail & Related papers (2020-12-21T15:28:09Z) - Fast and robust quantum state tomography from few basis measurements [65.36803384844723]
We present an online tomography algorithm designed to optimize all the aforementioned resources at the cost of a worse dependence on accuracy.
The protocol is the first to give provably optimal performance in terms of rank and dimension for state copies, measurement settings and memory.
Further improvements are possible by executing the algorithm on a quantum computer, giving a quantum speedup for quantum state tomography.
arXiv Detail & Related papers (2020-09-17T11:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.