Decomposition of Matrix Product States into Shallow Quantum Circuits
- URL: http://arxiv.org/abs/2209.00595v1
- Date: Thu, 1 Sep 2022 17:08:41 GMT
- Title: Decomposition of Matrix Product States into Shallow Quantum Circuits
- Authors: Manuel S. Rudolph, Jing Chen, Jacob Miller, Atithi Acharya, Alejandro
Perdomo-Ortiz
- Abstract summary: tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
- Score: 62.5210028594015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid pace of recent advancements in numerical computation, notably the
rise of GPU and TPU hardware accelerators, have allowed tensor network (TN)
algorithms to scale to even larger quantum simulation problems, and to be
employed more broadly for solving machine learning tasks. The
"quantum-inspired" nature of TNs permits them to be mapped to parametrized
quantum circuits (PQCs), a fact which has inspired recent proposals for
enhancing the performance of TN algorithms using near-term quantum devices, as
well as enabling joint quantum-classical training frameworks which benefit from
the distinct strengths of TN and PQC models. However, the success of any such
methods depends on efficient and accurate methods for approximating TN states
using realistic quantum circuits, something which remains an unresolved
question. In this work, we compare a range of novel and previously-developed
algorithmic protocols for decomposing matrix product states (MPS) of arbitrary
bond dimensions into low-depth quantum circuits consisting of stacked linear
layers of two-qubit unitaries. These protocols are formed from different
combinations of a preexisting analytical decomposition scheme with constrained
optimization of circuit unitaries, and all possess efficient classical
runtimes. Our experimental results reveal one particular protocol, involving
sequential growth and optimization of the quantum circuit, to outperform all
other methods, with even greater benefits seen in the setting of limited
computational resources. Given these promising results, we expect our proposed
decomposition protocol to form a useful ingredient within any joint application
of TNs and PQCs, in turn further unlocking the rich and complementary benefits
of classical and quantum computation.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization [0.8121127831316319]
We propose a method for constructing quantum circuits which greatly reduces inter-device communication costs.
We show that we can construct tractable circuits nearly three times the size of previous QDCA methods while retaining a similar or greater level of quality.
arXiv Detail & Related papers (2024-05-01T20:49:50Z) - Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
Quantum Approximate Optimization (QAOA) stands out for its potential to efficiently solve the Max-Cut problem.
We use Graph Neural Networks (GNN) as a warm-start technique to optimize QAOA, using GNN as a warm-start technique.
Our findings show GNN's potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing.
arXiv Detail & Related papers (2024-03-05T20:23:25Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.