MUVO: A Multimodal Generative World Model for Autonomous Driving with Geometric Representations
- URL: http://arxiv.org/abs/2311.11762v4
- Date: Thu, 24 Apr 2025 13:08:08 GMT
- Title: MUVO: A Multimodal Generative World Model for Autonomous Driving with Geometric Representations
- Authors: Daniel Bogdoll, Yitian Yang, Tim Joseph, Melih Yazgan, J. Marius Zöllner,
- Abstract summary: We evaluate different sensor fusion strategies to better understand the effects on sensor data prediction.<n>We also examine the benefits of additionally predicting 3D occupancy.
- Score: 16.94473342644408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: World models for autonomous driving have the potential to dramatically improve the reasoning capabilities of today's systems. However, most works focus on camera data, with only a few that leverage lidar data or combine both to better represent autonomous vehicle sensor setups. In addition, raw sensor predictions are less actionable than 3D occupancy predictions, but there are no works examining the effects of combining both multimodal sensor data and 3D occupancy prediction. In this work, we perform a set of experiments with a MUltimodal World Model with Geometric VOxel representations (MUVO) to evaluate different sensor fusion strategies to better understand the effects on sensor data prediction. We also analyze potential weaknesses of current sensor fusion approaches and examine the benefits of additionally predicting 3D occupancy.
Related papers
- Graph-Based Multi-Modal Sensor Fusion for Autonomous Driving [3.770103075126785]
We introduce a novel approach to multi-modal sensor fusion, focusing on developing a graph-based state representation.
We present a Sensor-Agnostic Graph-Aware Kalman Filter, the first online state estimation technique designed to fuse multi-modal graphs.
We validate the effectiveness of our proposed framework through extensive experiments conducted on both synthetic and real-world driving datasets.
arXiv Detail & Related papers (2024-11-06T06:58:17Z) - Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
World models and video generation are pivotal technologies in the domain of autonomous driving.
This paper investigates the relationship between these two technologies.
By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions.
arXiv Detail & Related papers (2024-11-05T08:58:35Z) - DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model [65.43473733967038]
We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics.
Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge.
arXiv Detail & Related papers (2024-10-14T17:19:23Z) - Learning 3D Perception from Others' Predictions [64.09115694891679]
We investigate a new scenario to construct 3D object detectors: learning from the predictions of a nearby unit that is equipped with an accurate detector.
For example, when a self-driving car enters a new area, it may learn from other traffic participants whose detectors have been optimized for that area.
arXiv Detail & Related papers (2024-10-03T16:31:28Z) - Driving in the Occupancy World: Vision-Centric 4D Occupancy Forecasting and Planning via World Models for Autonomous Driving [15.100104512786107]
Drive-OccWorld adapts a visioncentric- 4D forecasting world model to end-to-end planning for autonomous driving.
We propose injecting flexible action conditions, such as velocity, steering angle, trajectory, and commands, into the world model.
Experiments on the nuScenes dataset demonstrate that our method can generate plausible and controllable 4D occupancy.
arXiv Detail & Related papers (2024-08-26T11:53:09Z) - Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation [5.143097874851516]
We study two novel methods tailored for multi-sensor scenarios, namely Input Sensor Dropout (ISensD) and Ensemble Sensor Invariant (ESensI)
We demonstrate that these methods effectively increase the robustness of model predictions to missing sensors.
We observe that ensemble multi-sensor models are the most robust to the lack of sensors.
arXiv Detail & Related papers (2024-07-22T09:58:29Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond [101.15395503285804]
General world models represent a crucial pathway toward achieving Artificial General Intelligence (AGI)
In this survey, we embark on a comprehensive exploration of the latest advancements in world models.
We examine challenges and limitations of world models, and discuss their potential future directions.
arXiv Detail & Related papers (2024-05-06T14:37:07Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WM is the first driving world model compatible with existing end-to-end planning models.
Our model generates high-fidelity multiview videos in driving scenes.
arXiv Detail & Related papers (2023-11-29T18:59:47Z) - Copilot4D: Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion [36.321494200830244]
Copilot4D is a novel world modeling approach that first tokenizes sensor observations with VQVAE, then predicts the future via discrete diffusion.
Our results demonstrate that discrete diffusion on tokenized agent experience can unlock the power of GPT-like unsupervised learning for robotics.
arXiv Detail & Related papers (2023-11-02T06:21:56Z) - UniTR: A Unified and Efficient Multi-Modal Transformer for
Bird's-Eye-View Representation [113.35352122662752]
We present an efficient multi-modal backbone for outdoor 3D perception named UniTR.
UniTR processes a variety of modalities with unified modeling and shared parameters.
UniTR is also a fundamentally task-agnostic backbone that naturally supports different 3D perception tasks.
arXiv Detail & Related papers (2023-08-15T12:13:44Z) - Neural World Models for Computer Vision [2.741266294612776]
We present a framework to train a world model and a policy, parameterised by deep neural networks.
We leverage important computer vision concepts such as geometry, semantics, and motion to scale world models to complex urban driving scenes.
Our model can jointly predict static scene, dynamic scene, and ego-behaviour in an urban driving environment.
arXiv Detail & Related papers (2023-06-15T14:58:21Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians.
Our method efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin.
Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages.
arXiv Detail & Related papers (2022-12-15T11:15:14Z) - Pedestrian 3D Bounding Box Prediction [83.7135926821794]
We focus on 3D bounding boxes, which are reasonable estimates of humans without modeling complex motion details for autonomous vehicles.
We suggest this new problem and present a simple yet effective model for pedestrians' 3D bounding box prediction.
This method follows an encoder-decoder architecture based on recurrent neural networks.
arXiv Detail & Related papers (2022-06-28T17:59:45Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - Multi-Modal 3D Object Detection in Autonomous Driving: a Survey [10.913958563906931]
Self-driving cars are equipped with a suite of sensors to conduct robust and accurate environment perception.
As the number and type of sensors keep increasing, combining them for better perception is becoming a natural trend.
This survey devotes to review recent fusion-based 3D detection deep learning models that leverage multiple sensor data sources.
arXiv Detail & Related papers (2021-06-24T02:52:12Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z) - Investigating the Effect of Sensor Modalities in Multi-Sensor
Detection-Prediction Models [8.354898936252516]
We focus on the contribution of sensor modalities towards the model performance.
In addition, we investigate the use of sensor dropout to mitigate the above-mentioned issues.
arXiv Detail & Related papers (2021-01-09T03:21:36Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
We investigate the impact of fused LiDAR point clouds compared to single LiDAR point clouds.
The evaluation of the extracted trajectories shows that a fused infrastructure approach significantly increases the tracking results and reaches accuracies within a few centimeters.
arXiv Detail & Related papers (2020-06-22T10:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.