IntentNet: Learning to Predict Intention from Raw Sensor Data
- URL: http://arxiv.org/abs/2101.07907v1
- Date: Wed, 20 Jan 2021 00:31:52 GMT
- Title: IntentNet: Learning to Predict Intention from Raw Sensor Data
- Authors: Sergio Casas, Wenjie Luo, Raquel Urtasun
- Abstract summary: In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
- Score: 86.74403297781039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to plan a safe maneuver, self-driving vehicles need to understand
the intent of other traffic participants. We define intent as a combination of
discrete high-level behaviors as well as continuous trajectories describing
future motion. In this paper, we develop a one-stage detector and forecaster
that exploits both 3D point clouds produced by a LiDAR sensor as well as
dynamic maps of the environment. Our multi-task model achieves better accuracy
than the respective separate modules while saving computation, which is
critical to reducing reaction time in self-driving applications.
Related papers
- Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting [58.45661235893729]
One promising self-supervised task is 3D point cloud forecasting from unannotated LiDAR sequences.
We show that this task requires algorithms to implicitly capture (1) sensor extrinsics (i.e., the egomotion of the autonomous vehicle), (2) sensor intrinsics (i.e., the sampling pattern specific to the particular LiDAR sensor), and (3) the shape and motion of other objects in the scene.
We render point cloud data from 4D occupancy predictions given sensor extrinsics and intrinsics, allowing one to train and test occupancy algorithms with unannotated LiDAR sequences.
arXiv Detail & Related papers (2023-02-25T18:12:37Z) - Motion Inspired Unsupervised Perception and Prediction in Autonomous
Driving [29.731790562352344]
This paper pioneers a novel and challenging direction, i.e., training perception and prediction models to understand open-set moving objects.
Our proposed framework uses self-learned flow to trigger an automated meta labeling pipeline to achieve automatic supervision.
We show that our approach generates highly promising results in open-set 3D detection and trajectory prediction.
arXiv Detail & Related papers (2022-10-14T18:55:44Z) - CARNet: A Dynamic Autoencoder for Learning Latent Dynamics in Autonomous
Driving Tasks [11.489187712465325]
An autonomous driving system should effectively use the information collected from the various sensors in order to form an abstract description of the world.
Deep learning models, such as autoencoders, can be used for that purpose, as they can learn compact latent representations from a stream of incoming data.
This work proposes CARNet, a Combined dynAmic autoencodeR NETwork architecture that utilizes an autoencoder combined with a recurrent neural network to learn the current latent representation.
arXiv Detail & Related papers (2022-05-18T04:15:42Z) - Fully End-to-end Autonomous Driving with Semantic Depth Cloud Mapping
and Multi-Agent [2.512827436728378]
We propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously.
The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions.
arXiv Detail & Related papers (2022-04-12T03:57:01Z) - Self-Supervised Pillar Motion Learning for Autonomous Driving [10.921208239968827]
We propose a learning framework that leverages free supervisory signals from point clouds and paired camera images to estimate motion purely via self-supervision.
Our model involves a point cloud based structural consistency augmented with probabilistic motion masking as well as a cross-sensor motion regularization to realize the desired self-supervision.
arXiv Detail & Related papers (2021-04-18T02:32:08Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.