Floquet Engineering of Hilbert Space Fragmentation in Stark Lattices
- URL: http://arxiv.org/abs/2311.11771v1
- Date: Mon, 20 Nov 2023 13:58:18 GMT
- Title: Floquet Engineering of Hilbert Space Fragmentation in Stark Lattices
- Authors: Li Zhang and Yongguan Ke and Ling Lin and Chaohong Lee
- Abstract summary: The concept of Hilbert space fragmentation (HSF) has recently been put forward as a routine to break quantum ergodicity.
We propose a scheme to tune HSF in a one-dimensional tilted lattice of interacting spinless fermions with periodically driven tunneling.
- Score: 4.302895584161412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The concept of Hilbert space fragmentation (HSF) has recently been put
forward as a routine to break quantum ergodicity. While HSF widely exists in
dynamical constraint models, it is still challenging to tune HSF. Here, we
propose a scheme to tune HSF in a one-dimensional tilted lattice of interacting
spinless fermions with periodically driven tunneling. The dynamics is governed
by effective Hamiltonians with kinetic constraints, which appear as
density-dependent tunneling in the weak-tunneling perturbation expansion. The
kinetic constraint can be tuned via changing the driving frequency, and three
different kinds of strong HSF can be engineered. In general, the system is
strongly constrained and exhibits a strong HSF. Two partial resonance
frequencies are analytically given by a time-dependent perturbation theory for
Floquet systems, at which some kinetic constraints are released and the system
exhibits another two different strong HSF. We demonstrate the perturbation
analysis with exact numerical simulation of the entanglement entropy, the
density correlation functions and the saturated local density profiles. Our
result provides a promising way to control HSF through Floquet engineering.
Related papers
- Observation of slow relaxation due to Hilbert space fragmentation in strongly interacting Bose-Hubbard chains [0.0]
We experimentally investigate the one-dimensional Bose-Hubbard system with neither disorder nor tilt potential.
We find that the numbers of singlons and doublons are conserved during the dynamics, indicating HSF as a mechanism of the observed slow relaxation.
arXiv Detail & Related papers (2025-02-05T07:52:58Z) - Observation of Hilbert-space fragmentation and fractonic excitations in two-dimensional Hubbard systems [0.0]
We experimentally observe Hilbert space fragmentation (HSF) in a two-dimensional tilted Bose-Hubbard model.
We find uniform initial states with equal particle number and energy differ strikingly in their relaxation dynamics.
Our results mark the first observation of HSF beyond one dimension, as well as the concomitant direct observation of fractons.
arXiv Detail & Related papers (2024-04-23T10:22:40Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Prethermal fragmentation in a periodically driven Fermionic chain [0.0]
We study a Fermionic chain with nearest-neighbor hopping and density-density interactions, where the nearest-neighbor interaction term is driven periodically.
We show that such a driven chain exhibits prethermal strong Hilbert space fragmentation (HSF) in the high drive amplitude regime at specific drive frequencies.
arXiv Detail & Related papers (2022-12-07T19:00:04Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum Metrology Protected by Hilbert Space Fragmentation [0.0]
coherent quantum dynamics employing the Hilbert-space fragmentation (HSF)
We show that the emergent HSF caused by strong Ising interactions enables us to design a stable state where part of the spins is effectively decoupled from the rest of the system.
Using the decoupled spins as a probe to measure a transverse field, we demonstrate that the Heisenberg limited sensitivity is achieved without suffering from thermalization.
arXiv Detail & Related papers (2022-11-17T14:51:22Z) - Persistent-current states originating from the Hilbert space
fragmentation in momentum space [0.0]
We show that persistent-current states emerge due to the HSF in the momentum space.
We also investigate the stability of the PC states against the random potential, which breaks the structure of the HSF.
arXiv Detail & Related papers (2022-11-01T23:39:54Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Real-Space, Real-Time Approach to Quantum-Electrodynamical
Time-Dependent Density Functional Theory [55.41644538483948]
The equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid.
Examples include the coupling strength and light frequency dependence of the energies, wave functions, optical absorption spectra, and Rabi splitting magnitudes in cavities.
arXiv Detail & Related papers (2022-09-01T18:49:51Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Nonequilibrium steady states in the Floquet-Lindblad systems: van
Vleck's high-frequency expansion approach [4.726777092009554]
Nonequilibrium steady states (NESSs) in periodically driven dissipative quantum systems are vital in Floquet engineering.
We develop a general theory for high-frequency drives with Lindblad-type dissipation to characterize and analyze NESSs.
arXiv Detail & Related papers (2021-07-16T14:05:20Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.